Institute of Gastroenterology, Chaim Sheba Medical Center, Ramat Gan, Israel.
Sackler faculty of medicine, Tel Aviv University, Tel Aviv, Israel.
Inflamm Bowel Dis. 2023 Dec 5;29(12):1901-1906. doi: 10.1093/ibd/izad014.
The use of intestinal ultrasound (IUS) for the diagnosis and follow-up of inflammatory bowel disease is steadily growing. Although access to educational platforms of IUS is feasible, novice ultrasound operators lack experience in performing and interpreting IUS. An artificial intelligence (AI)-based operator supporting system that automatically detects bowel wall inflammation may simplify the use of IUS by less experienced operators. Our aim was to develop and validate an artificial intelligence module that can distinguish bowel wall thickening (a surrogate of bowel inflammation) from normal bowel images of IUS.
We used a self-collected image data set to develop and validate a convolutional neural network module that can distinguish bowel wall thickening >3 mm (a surrogate of bowel inflammation) from normal bowel images of IUS.
The data set consisted of 1008 images, distributed uniformly (50% normal images, 50% abnormal images). Execution of the training phase and the classification phase was performed using 805 and 203 images, respectively. The overall accuracy, sensitivity, and specificity for detection of bowel wall thickening were 90.1%, 86.4%, and 94%, respectively. The network exhibited an average area under the ROC curve of 0.9777 for this task.
We developed a machine-learning module based on a pretrained convolutional neural network that is highly accurate in the recognition of bowel wall thickening on intestinal ultrasound images in Crohn's disease. Incorporation of convolutional neural network to IUS may facilitate the use of IUS by inexperienced operators and allow automatized detection of bowel inflammation and standardization of IUS imaging interpretation.
肠超声(IUS)在炎症性肠病的诊断和随访中的应用正在稳步增长。尽管可以访问 IUS 的教育平台,但新手超声操作人员缺乏进行和解释 IUS 的经验。基于人工智能(AI)的操作员支持系统,可自动检测肠壁炎症,可能会简化经验不足的操作员对 IUS 的使用。我们的目的是开发和验证一种人工智能模块,该模块可以区分 IUS 的肠壁增厚(肠炎症的替代物)与正常肠图像。
我们使用自收集的图像数据集来开发和验证一种卷积神经网络模块,该模块可以区分 IUS 的肠壁增厚>3mm(肠炎症的替代物)与正常肠图像。
该数据集由 1008 张图像组成,分布均匀(50%正常图像,50%异常图像)。分别使用 805 张和 203 张图像执行训练阶段和分类阶段。检测肠壁增厚的总体准确性、敏感性和特异性分别为 90.1%、86.4%和 94%。该网络在这项任务中的平均 ROC 曲线下面积为 0.9777。
我们开发了一种基于预先训练的卷积神经网络的机器学习模块,该模块在识别克罗恩病的 IUS 图像中的肠壁增厚方面具有很高的准确性。卷积神经网络与 IUS 的结合可能会使经验不足的操作员更轻松地使用 IUS,并允许自动检测肠炎症和标准化 IUS 成像解释。