Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
Blood Transfus. 2023 Nov 14;21(6):472-478. doi: 10.2450/2023.0267-22.
RhD immunization is still the major cause of hemolytic disease of the fetus and newborn. Fetal RHD genotyping during pregnancy followed by tailored anti-D prophylaxis for pregnant RhD-negative women carrying an RHD-positive fetus to prevent RhD immunization is a well-established practice in many countries. This study aimed to validate a platform for high-throughput, non-invasive, single-exon, fetal RHD genotyping consisting of automated DNA extraction and PCR set-up, and a novel system for electronic data transfer to the real-time PCR instrument. We also investigated the effect of storage conditions of fresh or frozen samples on the outcome of the assay.
Blood samples from 261 RhD-negative pregnant women collected in Gothenburg, Sweden, between November 2018 and April 2020 during gestation week 10-14 were either tested as fresh after storage for 0-7 days at room temperature or as thawed plasma samples previously separated and stored for up to 13 months at -80°C. Extraction of cell-free fetal DNA and PCR set-up were performed in a closed automated system. Fetal RHD genotyping was determined by real-time PCR amplification of the RHD gene exon 4.
The outcome of RHD genotyping was compared with either the results obtained with serological RhD typing of newborns or with the results of RHD genotyping performed by other laboratories. No difference was observed in genotyping results when using fresh or frozen plasma during short- and long-term storage, revealing high stability of cell-free fetal DNA. The assay has shown high sensitivity (99.37%), specificity (100%), and accuracy (99.62%).
These data confirm that the proposed platform for non-invasive, single-exon, RHD genotyping early in pregnancy is accurate and robust. Importantly, we demonstrated the stability of cell-free fetal DNA in fresh and frozen samples after short- and long-term storage.
RhD 免疫仍是胎儿和新生儿溶血病的主要原因。在许多国家,对携带 RhD 阳性胎儿的 RhD 阴性孕妇进行妊娠期间胎儿 RHD 基因分型,并根据结果为孕妇量身定制抗 D 预防措施,以防止 RhD 免疫,这是一种成熟的做法。本研究旨在验证一种高通量、非侵入性、单外显子的胎儿 RHD 基因分型平台,该平台包括自动化 DNA 提取和 PCR 设置,以及一种新型电子数据传输系统,用于实时 PCR 仪器。我们还研究了新鲜或冷冻样本的储存条件对检测结果的影响。
2018 年 11 月至 2020 年 4 月期间,在瑞典哥德堡采集了 261 名 RhD 阴性孕妇的血液样本,在妊娠 10-14 周时,将这些样本储存在室温下 0-7 天,或者在 -80°C 下储存长达 13 个月,作为解冻的血浆样本进行测试。细胞游离胎儿 DNA 的提取和 PCR 建立在封闭的自动化系统中进行。通过实时 PCR 扩增 RHD 基因外显子 4 来确定胎儿 RHD 基因分型。
将 RHD 基因分型的结果与新生儿血清学 RhD 定型的结果或其他实验室进行的 RHD 基因分型的结果进行比较。在短期和长期储存期间,使用新鲜或冷冻血浆时,基因分型结果无差异,表明细胞游离胎儿 DNA 具有高度稳定性。该检测方法具有高灵敏度(99.37%)、特异性(100%)和准确性(99.62%)。
这些数据证实,早期妊娠非侵入性、单外显子 RHD 基因分型的拟议平台准确且稳健。重要的是,我们证明了新鲜和冷冻样本在短期和长期储存后细胞游离胎儿 DNA 的稳定性。