Suppr超能文献

吉布斯过程区分了生存和揭示胶质母细胞瘤中的接触抑制基因。

Gibbs process distinguishes survival and reveals contact-inhibition genes in Glioblastoma multiforme.

机构信息

Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America.

Ernst & Young, Houston, TX, United States of America.

出版信息

PLoS One. 2023 Feb 16;18(2):e0277176. doi: 10.1371/journal.pone.0277176. eCollection 2023.

Abstract

Tumor growth is a spatiotemporal birth-and-death process with loss of heterotypic contact-inhibition of locomotion (CIL) of tumor cells promoting invasion and metastasis. Therefore, representing tumor cells as two-dimensional points, we can expect the tumor tissues in histology slides to reflect realizations of spatial birth-and-death process which can be mathematically modeled to reveal molecular mechanisms of CIL, provided the mathematics models the inhibitory interactions. Gibbs process as an inhibitory point process is a natural choice since it is an equilibrium process of the spatial birth-and-death process. That is if the tumor cells maintain homotypic contact inhibition, the spatial distributions of tumor cells will result in Gibbs hard core process over long time scales. In order to verify if this is the case, we applied the Gibbs process to 411 TCGA Glioblastoma multiforme patient images. Our imaging dataset included all cases for which diagnostic slide images were available. The model revealed two groups of patients, one of which - the "Gibbs group," showed the convergence of the Gibbs process with significant survival difference. Further smoothing the discretized (and noisy) inhibition metric, for both increasing and randomized survival time, we found a significant association of the patients in the Gibbs group with increasing survival time. The mean inhibition metric also revealed the point at which the homotypic CIL establishes in tumor cells. Besides, RNAseq analysis between patients with loss of heterotypic CIL and intact homotypic CIL in the Gibbs group unveiled cell movement gene signatures and differences in Actin cytoskeleton and RhoA signaling pathways as key molecular alterations. These genes and pathways have established roles in CIL. Taken together, our integrated analysis of patient images and RNAseq data provides for the first time a mathematical basis for CIL in tumors, explains survival as well as uncovers the underlying molecular landscape for this key tumor invasion and metastatic phenomenon.

摘要

肿瘤生长是一个时空的生死过程,肿瘤细胞失去异型接触抑制的运动(CIL)促进了侵袭和转移。因此,将肿瘤细胞表示为二维点,我们可以预期组织学切片中的肿瘤组织反映了空间生死过程的实现,这些过程可以通过数学模型来揭示 CIL 的分子机制,只要数学模型能够模拟抑制相互作用。吉布斯过程作为一种抑制点过程是一个自然的选择,因为它是空间生死过程的平衡过程。也就是说,如果肿瘤细胞保持同型接触抑制,肿瘤细胞的空间分布将导致长时间尺度上的吉布斯硬核心过程。为了验证这是否是事实,我们将吉布斯过程应用于 411 个 TCGA 胶质母细胞瘤患者的图像。我们的成像数据集包括所有可获得诊断幻灯片图像的病例。该模型揭示了两组患者,其中一组 - “吉布斯组”,显示了吉布斯过程的收敛,具有显著的生存差异。进一步对离散化(和嘈杂)的抑制度量进行平滑处理,无论是增加还是随机化生存时间,我们都发现吉布斯组中患者与生存时间增加之间存在显著关联。平均抑制度量还揭示了同型 CIL 在肿瘤细胞中建立的点。此外,吉布斯组中失去异型 CIL 和完整同型 CIL 的患者之间的 RNAseq 分析揭示了细胞运动基因特征以及肌动蛋白细胞骨架和 RhoA 信号通路的差异,这些是关键的分子改变。这些基因和通路在 CIL 中具有重要作用。总之,我们对患者图像和 RNAseq 数据的综合分析首次为肿瘤中的 CIL 提供了数学基础,解释了生存情况,并揭示了这种关键肿瘤侵袭和转移现象的潜在分子景观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc1/9934342/2750c3c2ffff/pone.0277176.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验