Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran.
Biotechnology Department, Bahyaar Sanaat Sepahan Company, Isfahan, Iran.
Viral Immunol. 2023 Apr;36(3):186-202. doi: 10.1089/vim.2022.0121. Epub 2023 Feb 16.
Emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants have raised concerns about the efficacy of vaccines. The present study aimed to compare the potential of Delta and Omicron variant-specific mRNA vaccines in inducing immune responses. B cell and T cell epitopes and population coverage of spike (S) glycoprotein of the variants were predicted using the Immune Epitope Database. The molecular docking was carried out between the protein and different toll-like receptors, as well as the receptor-binding domain (RBD) protein and angiotensin-converting-enzyme 2 (ACE2) cellular receptor using ClusPro. The molecular simulation was done for each docked RBD-ACE2 using YASARA. The mRNA secondary structure was predicted through the RNAfold. The simulation of immune responses to the mRNA vaccine construct was performed using C-ImmSim. Apart from a few positions, no significant difference was observed in the prediction of S protein B cell and T cell epitopes of these two variants. The lower amounts of Median consensus percentile in the Delta variant in similar positions signify its stronger affinity to major histocompatibility complex (MHC) II binding alleles. Docking of Delta S protein with TLR3, TLR4, and TLR7 and also its RBD with ACE2 showed striking interactions with the lower binding energy than Omicron. In the immune simulation, elevated levels of cytotoxic T lymphocytes, helper T lymphocytes, and memory cells in both the active and resting states and the main regulators of the immune system suggested the capacity of mRNA constructs to elicit robust immune responses against SARS-CoV-2 variants. Considering slight differences in the binding affinity to MHC II binding alleles, activation of TLRs, mRNA secondary structure stability, and concentration of immunoglobulins and cytokines, the Delta variant is suggested for the mRNA vaccine construction. Further studies are being done to prove the efficiency of the design construct.
新兴的严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)变体引起了人们对疫苗效力的担忧。本研究旨在比较 Delta 和奥密克戎变体特异性 mRNA 疫苗在诱导免疫反应方面的潜力。使用免疫表位数据库预测了变体刺突(S)糖蛋白的 B 细胞和 T 细胞表位和人群覆盖率。使用 ClusPro 对蛋白与不同 Toll 样受体以及受体结合域(RBD)蛋白和血管紧张素转换酶 2(ACE2)细胞受体之间进行了分子对接。使用 YASARA 对每个对接的 RBD-ACE2 进行了分子模拟。通过 RNAfold 预测了 mRNA 的二级结构。使用 C-ImmSim 模拟了 mRNA 疫苗构建体对免疫反应的作用。除了少数几个位置外,这两种变体的 S 蛋白 B 细胞和 T 细胞表位的预测没有明显差异。Delta 变体在相似位置的中位数共识百分位数较低,表明其与主要组织相容性复合物(MHC)II 结合等位基因的亲和力更强。Delta S 蛋白与 TLR3、TLR4 和 TLR7 的对接及其 RBD 与 ACE2 的对接显示出与奥密克戎相比具有较低结合能的惊人相互作用。在免疫模拟中,无论是在活跃状态还是静止状态下,细胞毒性 T 淋巴细胞、辅助 T 淋巴细胞和记忆细胞的水平都升高,并且免疫系统的主要调节剂表明 mRNA 构建体有能力引发针对 SARS-CoV-2 变体的强烈免疫反应。考虑到与 MHC II 结合等位基因的结合亲和力、TLR 激活、mRNA 二级结构稳定性以及免疫球蛋白和细胞因子的浓度略有差异,建议将 Delta 变体用于 mRNA 疫苗构建。正在进行进一步的研究以证明设计构建体的效率。
Viral Immunol. 2023-4
Comput Biol Chem. 2024-10