Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
Phys Rev E. 2023 Jan;107(1-1):014136. doi: 10.1103/PhysRevE.107.014136.
A CMOS-based implementation of an autonomous Maxwell's demon was recently proposed [Phys. Rev. Lett. 129, 120602 (2022)0031-900710.1103/PhysRevLett.129.120602] to demonstrate that a Maxwell demon can still work at macroscopic scales, provided that its power supply is scaled appropriately. Here we first provide a full analytical characterization of the nonautonomous version of that model. We then study system-demon information flows within generic autonomous bipartite setups displaying a macroscopic limit. By doing so, we can study the thermodynamic efficiency of both the measurement and the feedback process performed by the demon. We find that the information flow is an intensive quantity and that, as a consequence, any Maxwell's demon is bound to stop working above a finite scale if all parameters but the scale are fixed. However, this can be prevented by appropriately scaling the thermodynamic forces. These general results are applied to the autonomous CMOS-based demon.
最近提出了一种基于 CMOS 的自主麦克斯韦妖的实现方案[Phys. Rev. Lett. 129, 120602 (2022)0031-900710.1103/PhysRevLett.129.120602],以证明只要适当地调整其电源供应,麦克斯韦妖仍然可以在宏观尺度上工作。在这里,我们首先对该模型的非自主版本进行了全面的分析。然后,我们在显示宏观极限的通用自主双体设置中研究了系统-妖信息流。通过这样做,我们可以研究妖执行的测量和反馈过程的热力学效率。我们发现信息流是一个强度量,因此,如果除了比例之外的所有参数都固定,则任何麦克斯韦妖都会在有限的尺度之上停止工作。但是,通过适当调整热力学力可以防止这种情况发生。这些一般结果适用于自主基于 CMOS 的麦克斯韦妖。