Suppr超能文献

认知功能早期损害算法分类的应用与验证

Application and validation of an algorithmic classification of early impairment in cognitive performance.

作者信息

Cai Yurun, Schrack Jennifer A, Agrawal Yuri, Armstrong Nicole M, Wanigatunga Amal, Kitner-Triolo Melissa, Moghekar Abhay, Ferrucci Luigi, Simonsick Eleanor M, Resnick Susan M, Gross Alden L

出版信息

medRxiv. 2023 Feb 7:2023.02.04.23285477. doi: 10.1101/2023.02.04.23285477.

Abstract

OBJECTIVE

Due to the long prodromal period for dementia pathology, approaches are needed to detect cases before clinically recognizable symptoms are apparent, by which time it is likely too late to intervene. This study contrasted two theoretically-based algorithms for classifying early cognitive impairment (ECI) in adults aged ≥50 enrolled in the Baltimore Longitudinal Study of Aging.

METHOD

Two ECI algorithms were defined as poor performance (1 standard deviation [SD] below age-, sex-, race-, and education-specific means) in: (1) Card Rotations or California Verbal Learning Test (CVLT) immediate recall and (2) ≥1 (out of 2) memory or ≥3 (out of 6) non- memory tests. We evaluated concurrent criterion validity against consensus diagnoses of mild cognitive impairment (MCI) or dementia and global cognitive scores using receiver operating characteristic (ROC) curve analysis. Predictive criterion validity was evaluated using Cox proportional hazards models to examine the associations between algorithmic status and future adjudicated MCI/dementia.

RESULTS

Among 1,851 participants (mean age=65.2±11.8 years, 50% women, 74% white), the two ECI algorithms yielded comparably moderate concurrent criterion validity with adjudicated MCI/dementia. For predictive criterion validity, the algorithm based on impairment in Card Rotations or CVLT immediate recall was the better predictor of MCI/dementia (HR=3.53, 95%CI: 1.59-7.84) over 12.3 follow-up years.

CONCLUSIONS

Impairment in visuospatial ability or memory may be capable of detecting early cognitive changes in the preclinical phase among cognitively normal individuals.

摘要

目的

由于痴呆病理的前驱期较长,需要在临床可识别症状出现之前检测病例,而到那时进行干预可能为时已晚。本研究对比了两种基于理论的算法,用于对参加巴尔的摩老年纵向研究的≥50岁成年人的早期认知障碍(ECI)进行分类。

方法

两种ECI算法被定义为在以下方面表现不佳(低于年龄、性别、种族和教育程度特定均值1个标准差[SD]):(1)卡片旋转测试或加利福尼亚言语学习测试(CVLT)即时回忆,以及(2)2项记忆测试中的≥1项或6项非记忆测试中的≥3项。我们使用受试者操作特征(ROC)曲线分析评估与轻度认知障碍(MCI)或痴呆的共识诊断以及总体认知得分的并行标准效度。使用Cox比例风险模型评估预测标准效度,以检查算法状态与未来判定的MCI/痴呆之间的关联。

结果

在1851名参与者中(平均年龄 = 65.2±11.8岁,50%为女性,74%为白人),两种ECI算法与判定的MCI/痴呆具有相当适度的并行标准效度。对于预测标准效度,基于卡片旋转测试或CVLT即时回忆受损的算法在12.3年的随访期内是MCI/痴呆的更好预测指标(HR = 3.53,95%CI:1.59 - 7.84)。

结论

视觉空间能力或记忆受损可能能够在认知正常个体的临床前期检测到早期认知变化。

相似文献

3
Sensory impairment and algorithmic classification of early cognitive impairment.早期认知障碍的感觉障碍与算法分类
Alzheimers Dement (Amst). 2023 Apr 14;15(2):e12400. doi: 10.1002/dad2.12400. eCollection 2023 Apr-Jun.
5
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验