Suppr超能文献

一种用于电化学检测敌敌畏的高效金属氧化物掺杂金属有机框架材料[NdO-MIL(Fe)-88A]

A highly efficient metal oxide incorporated metal organic framework [NdO-MIL(Fe)-88A] for the electrochemical detection of dichlorvos.

作者信息

Narayanan Mariyammal, Singh Chauhan Narendra Pal, Perumal Panneerselvam

机构信息

Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India

Department of Chemistry, Faculty of Science, Bhupal Nobles University Udaipur 313002 Rajasthan India.

出版信息

RSC Adv. 2023 Feb 14;13(8):5565-5575. doi: 10.1039/d2ra07877e. eCollection 2023 Feb 6.

Abstract

In this study, a NdO@MIL(Fe)-88A composite was prepared through a hydrothermal method and used to detect dichlorvos. The XRD result demonstrated that the prepared sensor is highly crystalline in nature. The affinity of metal oxide and MIL(Fe)-88A could be utilised to overcome low stability and sensitivity owing to their synergistic and electronic effects. Differential pulse voltammetry (DPV) exhibits the electrocatalytic behaviour of NdO@MIL(Fe)-88A; it functions at a lower potential at -0.5 to 0.8 V and has a wide linear range of 1-250 nM. It shows a very low detection limit of 0.92 nM with good sensitivity (4.42 mA nM) and selectivity. The developed NdO@MIL(Fe)-88A sensor was successfully applied to detect dichlorvos in real analysis. The recovery range calculated for cabbage and orange extracts was 96-97% and 99.5-103.4%, respectively, and RSD% calculated for cabbage and orange extracts was from 1.40 to 3.39% and from 0.64 to 2.26%, respectively.

摘要

在本研究中,通过水热法制备了NdO@MIL(Fe)-88A复合材料,并用于检测敌敌畏。X射线衍射(XRD)结果表明,所制备的传感器本质上具有高度结晶性。金属氧化物与MIL(Fe)-88A的亲和力可因其协同效应和电子效应而用于克服稳定性和灵敏度较低的问题。差分脉冲伏安法(DPV)显示了NdO@MIL(Fe)-88A的电催化行为;它在-0.5至0.8 V的较低电位下发挥作用,线性范围宽,为1 - 250 nM。它具有0.92 nM的极低检测限,灵敏度良好(4.42 mA nM)且选择性高。所开发的NdO@MIL(Fe)-88A传感器成功应用于实际分析中敌敌畏的检测。计算得出卷心菜和橙子提取物的回收率范围分别为96 - 97%和99.5 - 103.4%,卷心菜和橙子提取物的相对标准偏差(RSD%)分别为1.40至3.39%和0.64至2.26%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2221/9926162/5cb7c82a06e1/d2ra07877e-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验