College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
International Research Centre Magtop, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
Phys Chem Chem Phys. 2023 Mar 1;25(9):6857-6866. doi: 10.1039/d2cp04806j.
Iridium oxides (iridates) provide a good platform to study the delicate interplay between spin-orbit coupling (SOC) interactions, electron correlation effects, Hund's coupling and lattice degrees of freedom. An overwhelming number of investigations primarily focus on tetravalent (Ir, 5d) and pentavalent (Ir, 5d) iridates, and far less attention has been paid to iridates with other valence states. Here, we pay our attention to a less-explored trivalent (Ir, 5d) iridate, KNaIrO, crystallizing in a triangular lattice with edge-sharing IrO octahedra and alkali metal ion intercalated [IrO] layers, offering a good platform to explore the interplay between different degrees of freedom. We theoretically determine the preferred occupied positions of the alkali metal ions from energetic viewpoints and reproduce the experimentally observed semiconducting behavior and nonmagnetic (NM) properties of KNaIrO. The SOC interactions play a critical role in the band dispersion, resulting in NM = 0 states. More intriguingly, our electronic structure not only uncovers the presence of intrinsic in-gap states and nearly free electron character for the conduction band minimum, but also explains the abnormally low activation energy in KNaIrO. Particularly, the band edge can be effectively modulated by mechanical strain, and the in-gap states feature enhanced band-convergence characteristics by 6% compressive strain, which will greatly enhance the electrical conductivity of KNaIrO. The present work sheds new light on the unconventional electronic structures of trivalent iridates, indicating their promising application as a nanoelectronic and thermoelectric material, which will attract extensive interest and stimulate experimental works to further understand the unprecedented electronic structures and exploit potential applications of the triangular trivalent iridate.
三价铱氧化物(iridates)为研究自旋轨道耦合(SOC)相互作用、电子相关效应、Hund 耦合和晶格自由度之间的微妙相互作用提供了一个很好的平台。大量的研究主要集中在四价(Ir,5d)和五价(Ir,5d)铱化物上,而对其他价态的铱化物关注较少。在这里,我们关注一个研究较少的三价(Ir,5d)铱化物 KNaIrO,它在三角形晶格中结晶,由共用边缘的 IrO 八面体和插层的碱金属离子[IrO]层组成,为探索不同自由度之间的相互作用提供了一个很好的平台。我们从能量角度理论确定了碱金属离子的优先占据位置,并再现了实验观察到的 KNaIrO 的半导体行为和非磁性(NM)性质。SOC 相互作用在能带色散中起着关键作用,导致 NM = 0 态。更有趣的是,我们的电子结构不仅揭示了固有带隙态的存在和导带底的近自由电子特性,而且解释了 KNaIrO 中异常低的激活能。特别是,通过机械应变可以有效地调制能带边缘,而带隙态通过 6%压缩应变具有增强的带收敛特性,这将大大提高 KNaIrO 的电导率。本工作为三价铱化物的非常规电子结构提供了新的认识,表明它们在纳米电子学和热电材料方面具有广阔的应用前景,这将引起广泛的兴趣,并激发实验工作,以进一步理解三角形三价铱化物前所未有的电子结构和开发其潜在应用。