National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russian Federation.
Department of Physics, Duke University, Durham, North Carolina 27708, USA.
Phys Rev Lett. 2023 Feb 3;130(5):051803. doi: 10.1103/PhysRevLett.130.051803.
The COHERENT Collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220 MeV/c^{2} using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9 keV_{nr}. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei. The cross section for this process is orders of magnitude higher than for other processes historically used for accelerator-based direct-detection searches so that our small, 14.6 kg detector significantly improves on past constraints. At peak sensitivity, we reject the flux consistent with the cosmologically observed dark-matter concentration for all coupling constants α_{D}<0.64, assuming a scalar dark-matter particle. We also calculate the sensitivity of future COHERENT detectors to dark-matter signals which will ambitiously test multiple dark-matter spin scenarios.
相干(COHERENT)合作组在散裂中子源上用质量在 1 到 220 MeV/c^{2} 之间的标量暗物质粒子进行了搜索,使用了对大于 9 keV_{nr}的核反冲灵敏的 CsI[Na]闪烁探测器。没有发现暗物质的证据,因此我们对允许的参数空间进行了限制。通过这个低阈值探测器,我们对暗物质与原子核之间的相干弹性散射敏感。这个过程的截面比历史上用于基于加速器的直接探测搜索的其他过程高几个数量级,因此我们这个小的、14.6 公斤的探测器大大提高了以前的限制。在峰值灵敏度下,我们拒绝了与宇宙观测到的暗物质浓度一致的通量,所有耦合常数 α_{D}<0.64,假设是标量暗物质粒子。我们还计算了未来 COHERENT 探测器对暗物质信号的灵敏度,这将雄心勃勃地测试多个暗物质自旋场景。