Suppr超能文献

室温下动态粘度高达 175 cP 的液体的压电雾化。

Piezoelectric atomization of liquids with dynamic viscosities up to 175 cP at room temperature.

机构信息

School of Mechanical and Electrical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.

School of Mechanical and Electrical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.

出版信息

Ultrason Sonochem. 2023 Mar;94:106331. doi: 10.1016/j.ultsonch.2023.106331. Epub 2023 Feb 13.

Abstract

Piezoelectric atomization has been applied in the field of respiratory medicine delivery and chemistry. However, the wider application of this technique is limited by the viscosity of the liquid. High-viscosity liquid atomization has great potential for applications in aerospace, medicine, solid-state batteries and engines, but the actual development of atomization is behind expectations. In this study, instead of the traditional model of single-dimensional vibration as a power supply, we propose a novel atomization mechanism that uses two coupled vibrations to induce micro-amplitude elliptical motion of the particles on the surface of the liquid carrier, which produces a similar effect as localized traveling waves to push the liquid forward and induce cavitation to achieve atomization. To achieve this, a flow tube internal cavitation atomizer (FTICA) consisting of a vibration source, a connecting block and a liquid carrier is designed. The prototype can atomize liquids with dynamic viscosities up to 175 cP at room temperature with a driving frequency of 507 kHz and a voltage of 85 V. The maximum atomization rate in the experiment is 56.35 mg/min, and the average atomized particle diameter is 10 µm. Vibration models for the three parts of the proposed FTICA are established, and the vibration characteristics and atomization mechanism of the prototype were verified using the vibration displacement measurement experiment and the spectroscopic experiment. This study offers new possibilities for transpulmonary inhalation therapy, engine fuel supply, solid-state battery processing and other areas where high-viscosity microparticle atomization is needed.

摘要

压电雾化已应用于呼吸医学输送和化学领域。然而,该技术的更广泛应用受到液体粘度的限制。高粘度液体雾化在航空航天、医学、固态电池和发动机等领域具有巨大的应用潜力,但实际的雾化发展落后于预期。在这项研究中,我们提出了一种新的雾化机制,而不是传统的一维振动作为动力源,使用两个耦合振动来诱导液体载体表面颗粒的微幅椭圆运动,从而产生类似于局部行波的效果,推动液体前进并诱导空化以实现雾化。为此,设计了一种由振动源、连接块和液体载体组成的流动管内空化雾化器(FTICA)。该原型机可以在室温下以 507 kHz 的驱动频率和 85 V 的电压雾化动态粘度高达 175 cP 的液体。实验中的最大雾化率为 56.35 mg/min,平均雾化颗粒直径为 10 µm。建立了所提出的 FTICA 的三个部分的振动模型,并通过振动位移测量实验和光谱实验验证了原型的振动特性和雾化机制。这项研究为经肺吸入治疗、发动机燃料供应、固态电池处理等需要高粘度微颗粒雾化的领域提供了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/161a/9975313/e36f74bef65c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验