Danielli Francesca, Ciriello Luca, La Barbera Luigi, Rodriguez Matas Jose Felix, Pennati Giancarlo
LaBS - Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Italy.
LaBS - Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Italy; IRCCS Istituto Ortopedico Galeazzi, Italy.
J Mech Behav Biomed Mater. 2023 Apr;140:105707. doi: 10.1016/j.jmbbm.2023.105707. Epub 2023 Feb 15.
Additive manufacturing is widely used in the orthopaedic industry for the high freedom and flexibility in the design and production of personalized custom implants made of Ti6Al4V. Within this context, finite element modeling of 3D printed prostheses is a robust tool both to guide the design phase and to support clinical evaluations, possibly virtually describing the in-vivo behavior of the implant. Given realistic scenarios, a suitable description of the overall implant's mechanical behavior is unavoidable. Considering typical custom prostheses' designs (i.e. acetabular and hemipelvis implants), complex designs involving solid and/or trabeculated parts, and material distribution at different scales hinder a high-fidelity modeling of the prostheses. Moreover, uncertainties in the production and in the material characterization of small parts approaching the accuracy limit of the additive manufacturing technology still exist. While recent works suggest that the mechanical properties of thin 3D-printed parts may be peculiarly affected by specific processing parameters (i.e. powder grain size, printing orientation, samples' thickness) as compared to conventional Ti6Al4V alloy, the current numerical models make gross simplifications in describing the complex material behavior of each part at different scales. The present study focuses on two patient-specific acetabular and hemipelvis prostheses, with the aim of experimentally characterizing and numerically describing the dependency of the mechanical behavior of 3D printed parts on their peculiar scale, therefore, overcoming one major limitation of current numerical models. Coupling experimental activities with finite element analyses, the authors initially characterized 3D printed Ti6Al4V dog-bone samples at different scales, representative of the main material components of the investigated prostheses. Afterwards, the authors implemented the characterized material behaviors into finite element models to compare the implications of adopting scale-dependent vs. conventional scaleindependent approaches in predicting the experimental mechanical behavior of the prostheses in terms of their overall stiffness and the local strain distribution. The material characterization results highlighted the need for a scale-dependent reduction of the elastic modulus for thin samples compared to the conventional Ti6Al4V, which is fundamental to properly describe the overall stiffness and local strain distribution on the prostheses. The presented works demonstrate how an appropriate material characterization and a scale-dependent material description is needed to develop reliable FE models of 3D printed implants characterized by a complex material distribution at different scales.
增材制造因其在由Ti6Al4V制成的个性化定制植入物的设计和生产中具有高度的自由度和灵活性,而在骨科行业中得到广泛应用。在此背景下,3D打印假体的有限元建模是一种强大的工具,既可以指导设计阶段,也可以支持临床评估,甚至可能虚拟描述植入物的体内行为。在实际情况下,对整个植入物的力学行为进行恰当描述是不可避免的。考虑到典型的定制假体设计(即髋臼和半骨盆植入物),涉及实体和/或小梁结构部分的复杂设计以及不同尺度下的材料分布,阻碍了对假体进行高保真建模。此外,接近增材制造技术精度极限的小零件在生产和材料特性方面仍存在不确定性。虽然最近的研究表明,与传统Ti6Al4V合金相比,薄的3D打印零件的力学性能可能会受到特定加工参数(即粉末粒度、打印方向、样品厚度)的特殊影响,但当前的数值模型在描述每个零件在不同尺度下的复杂材料行为时进行了大幅简化。本研究聚焦于两个针对特定患者的髋臼和半骨盆假体,旨在通过实验表征并从数值上描述3D打印零件的力学行为对其特定尺度的依赖性,从而克服当前数值模型的一个主要局限性。通过将实验活动与有限元分析相结合,作者首先对不同尺度下的3D打印Ti6Al4V狗骨形样品进行了表征,这些样品代表了所研究假体的主要材料成分。之后,作者将表征出的材料行为应用于有限元模型,以比较采用与尺度相关的方法和传统的与尺度无关的方法在预测假体的实验力学行为时,在整体刚度和局部应变分布方面的影响。材料表征结果表明,与传统Ti6Al4V相比,薄样品的弹性模量需要进行与尺度相关的折减,这对于正确描述假体的整体刚度和局部应变分布至关重要。所展示的工作表明,对于以不同尺度下复杂材料分布为特征的3D打印植入物,要建立可靠的有限元模型,需要进行适当的材料表征和与尺度相关的材料描述。