Zhang Hao, Zhang Zaicheng, Grauby-Heywang Christine, Kellay Hamid, Maali Abdelhamid
Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux & CNRS, 33405 Talence, France.
Langmuir. 2023 Mar 7;39(9):3332-3340. doi: 10.1021/acs.langmuir.2c03193. Epub 2023 Feb 21.
Atomic force microscopy (AFM) was used to study the interfacial rheology of air/water interfaces by investigating the thermal capillary fluctuations of surfactant-loaded interfaces. These interfaces are formed by depositing an air bubble on a solid substrate immersed in a surfactant (Triton X-100) solution. An AFM cantilever, in contact with the north pole of the bubble, probes its thermal fluctuations (amplitude of the vibration versus the frequency). The measured power spectral density of the nanoscale thermal fluctuations presents several resonance peaks corresponding to the different vibration modes of the bubble. The measured damping versus the surfactant concentration of each mode presents a maximum and then decreases to a saturation value. The measurements are in good agreement with the model developed by Levich for the damping of capillary waves in the presence of surfactants. Our results show that the AFM cantilever in contact with a bubble is a powerful tool to probe the rheological properties of air/water interfaces.
原子力显微镜(AFM)通过研究负载表面活性剂的界面的热毛细波动来研究空气/水界面的界面流变学。这些界面是通过将气泡沉积在浸入表面活性剂(Triton X-100)溶液中的固体基质上形成的。与气泡北极接触的AFM悬臂探测其热波动(振动幅度与频率的关系)。测量得到的纳米级热波动的功率谱密度呈现出几个对应于气泡不同振动模式的共振峰。每种模式下测量得到的阻尼与表面活性剂浓度的关系呈现出一个最大值,然后降至饱和值。这些测量结果与列维奇(Levich)开发的用于存在表面活性剂时毛细波阻尼的模型高度吻合。我们的结果表明,与气泡接触的AFM悬臂是探测空气/水界面流变性质的有力工具。