Suppr超能文献

基于 fly 嗅觉受体模拟肽功能化的石墨烯场效应晶体管对挥发性有机化合物的检测

Volatile Organic Compound Detection by Graphene Field-Effect Transistors Functionalized with Fly Olfactory Receptor Mimetic Peptides.

机构信息

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

出版信息

Anal Chem. 2023 Mar 7;95(9):4556-4563. doi: 10.1021/acs.analchem.3c00052. Epub 2023 Feb 20.

Abstract

An olfactory receptor mimetic peptide-modified graphene field-effect transistor (gFET) is a promising solution to overcome the principal challenge of low specificity graphene-based sensors for volatile organic compound (VOC) sensing. Herein, peptides mimicking a fruit fly olfactory receptor, OR19a, were designed by a high-throughput analysis method that combines a peptide array and gas chromatography for the sensitive and selective gFET detection of the signature citrus VOC, limonene. The peptide probe was bifunctionalized via linkage of a graphene-binding peptide to facilitate one-step self-assembly on the sensor surface. The limonene-specific peptide probe successfully achieved highly sensitive and selective detection of limonene by gFET, with a detection range of 8-1000 pM, while achieving facile sensor functionalization. Taken together, our target-specific peptide selection and functionalization strategy of a gFET sensor demonstrates advancement of a precise VOC detection system.

摘要

一种嗅觉受体模拟肽修饰的石墨烯场效应晶体管(gFET)是克服基于石墨烯的挥发性有机化合物(VOC)传感器特异性低的主要挑战的有前途的解决方案。在此,通过结合肽阵列和气相色谱的高通量分析方法设计了模拟果蝇嗅觉受体 OR19a 的肽,用于灵敏和选择性地检测特征柑橘类 VOC 柠檬烯的 gFET。通过连接石墨烯结合肽,使肽探针双功能化,以促进在传感器表面的一步自组装。柠檬烯特异性肽探针通过 gFET 成功实现了对柠檬烯的高灵敏度和选择性检测,检测范围为 8-1000 pM,同时实现了易于传感器功能化。总之,我们的 gFET 传感器的目标特异性肽选择和功能化策略证明了精确 VOC 检测系统的进步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验