Department of Chemistry, Georgia State University, Atlanta, Georgia, USA.
Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
J Biol Chem. 2023 Apr;299(4):103044. doi: 10.1016/j.jbc.2023.103044. Epub 2023 Feb 18.
Enzymes require flexible regions to adopt multiple conformations during catalysis. The mobile regions of enzymes include gates that modulate the passage of molecules in and out of the enzyme's active site. The enzyme PA1024 from Pseudomonas aeruginosa PA01 is a recently discovered flavin-dependent NADH:quinone oxidoreductase (NQO, EC 1.6.5.9). Q80 in loop 3 (residues 75-86) of NQO is ∼15 Å away from the flavin and creates a gate that seals the active site through a hydrogen bond with Y261 upon NADH binding. In this study, we mutated Q80 to glycine, leucine, or glutamate to investigate the mechanistic significance of distal residue Q80 in NADH binding in the active site of NQO. The UV-visible absorption spectrum reveals that the mutation of Q80 minimally affects the protein microenvironment surrounding the flavin. The anaerobic reductive half-reaction of the NQO-mutants yields a ≥25-fold increase in the K value for NADH compared to the WT enzyme. However, we determined that the k value was similar in the Q80G, Q80L, and wildtype enzymes and only ∼25% smaller in the Q80E enzyme. Steady-state kinetics with NQO-mutants and NQO-WT at varying concentrations of NADH and 1,4-benzoquinone establish a ≤5-fold decrease in the k/K value. Moreover, there is no significant difference in the k/K (∼1 × 10 Ms) and k (∼24 s) values in NQO-mutants and NQO-WT. These results are consistent with the distal residue Q80 being mechanistically essential for NADH binding to NQO with minimal effect on the quinone binding to the enzyme and hydride transfer from NADH to flavin.
酶在催化过程中需要灵活的区域来采用多种构象。酶的可移动区域包括调节分子进出酶活性部位的门。铜绿假单胞菌 PA01 的 PA1024 酶是一种新发现的黄素依赖性 NADH:醌氧化还原酶(NQO,EC 1.6.5.9)。NQO 中 loop 3(残基 75-86)中的 Q80 与黄素相隔约 15 Å,并通过与 NADH 结合时的 Y261 形成氢键,形成一个封闭活性部位的门。在这项研究中,我们将 Q80 突变为甘氨酸、亮氨酸或谷氨酸,以研究远端残基 Q80 在 NQO 活性部位中 NADH 结合的机制意义。紫外可见吸收光谱表明,Q80 的突变对黄素周围的蛋白质微环境的影响最小。与 WT 酶相比,NQO 突变体的厌氧还原半反应使 NADH 的 K 值增加了≥25 倍。然而,我们确定 Q80G、Q80L 和野生型酶的 k 值相似,而 Q80E 酶的 k 值仅约小 25%。在不同浓度的 NADH 和 1,4-苯醌下,用 NQO 突变体和 NQO-WT 进行稳态动力学测定,得出 k/K 值降低了≤5 倍。此外,在 NQO 突变体和 NQO-WT 中,k/K(约 1×10 Ms)和 k(约 24 s)的值没有显著差异。这些结果与远端残基 Q80 对 NADH 与 NQO 结合的机制至关重要的结论一致,对醌与酶结合以及 NADH 向黄素的氢转移的影响最小。