Suppr超能文献

通过固相微萃取箭式采样、热脱附-气相色谱-质谱联用以及机器学习方法评估真菌菌株、建筑保温材料和室内空气中的挥发性有机化合物。

Evaluation of VOCs from fungal strains, building insulation materials and indoor air by solid phase microextraction arrow, thermal desorption-gas chromatography-mass spectrometry and machine learning approaches.

作者信息

Ruiz-Jimenez Jose, Raskala Sanni, Tanskanen Ville, Aattela Elisa, Salkinoja-Salonen Mirja, Hartonen Kari, Riekkola Marja-Liisa

机构信息

University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014, Finland; Institute for Atmospheric and Earth System Research / Chemistry, P.O. Box 55, FI-00014, University of Helsinki, Finland.

University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014, Finland.

出版信息

Environ Res. 2023 May 1;224:115494. doi: 10.1016/j.envres.2023.115494. Epub 2023 Feb 18.

Abstract

Solid phase microextraction Arrow and thermal desorption-gas chromatography-mass spectrometry allowed the collection and evaluation of volatile organic compounds (VOCs) emitted by fungal cultures from building insulation materials and in indoor air. Principal component analysis, linear discriminant analysis and supported vector machine were used for visualization and statistical assessment of differences between samples. In addition, a screening tool based on the soft independent modelling of class analogies (SIMCA) was developed for identification of fungal contamination of indoor air. Ten different fungal strains, incubated under ambient and microaerophilic conditions, were analyzed for time period ranging from 5 to 29 days after inoculation resulting in a total of 140 samples. In addition, the effect of additives on the fungal growing media was studied. The total number of compounds and concentration values were used for the evaluation of the results. Clear differences were observed for VOC profiles emitted by different fungal strains by exploiting long chain alcohols (3-octanol, 1-hexanol and 2-octen-1-ol) and sesquiterpenes (farnesene, cuprene). The analysis of glass-wool and cellulose based building insulation materials (3 samples) gave clear differences, mainly for oxygenated compounds (ethyl acetate and hexanal) and benzenoids (benzaldehyde). Moreover, the comparison of indoor air and insulation materials collected from a house with fungal indoor air problems indicated that 42% of the VOCs were found in both samples. The analysis of 52 indoor air samples demonstrated clear differences in their VOC profiles, especially for hydrocarbons, and between control (44 samples) and indoor air problem houses (8 samples). Finally, the SIMCA model enabled to recognize differences between control and fungi contaminated houses with a prediction capacity over 84%.

摘要

固相微萃取箭式探头和热脱附-气相色谱-质谱联用技术可用于收集和评估建筑保温材料上真菌培养物以及室内空气中排放的挥发性有机化合物(VOCs)。主成分分析、线性判别分析和支持向量机用于样本差异的可视化和统计评估。此外,还开发了一种基于类类比软独立建模(SIMCA)的筛选工具,用于识别室内空气的真菌污染。对接种后5至29天内处于环境条件和微需氧条件下培养的10种不同真菌菌株进行了分析,共得到140个样本。此外,还研究了添加剂对真菌生长培养基的影响。使用化合物总数和浓度值来评估结果。通过利用长链醇(3-辛醇、1-己醇和2-辛烯-1-醇)和倍半萜(法呢烯、古巴烯),观察到不同真菌菌株排放的VOCs谱存在明显差异。对基于玻璃棉和纤维素的建筑保温材料(3个样本)的分析显示出明显差异,主要是对于含氧化合物(乙酸乙酯和己醛)和苯类化合物(苯甲醛)。此外,对一所存在室内空气真菌问题的房屋收集的室内空气和保温材料进行比较表明,两个样本中均发现了42%的VOCs。对52个室内空气样本的分析表明,它们的VOCs谱存在明显差异,尤其是对于碳氢化合物,以及对照(44个样本)和存在室内空气问题的房屋(8个样本)之间。最后,SIMCA模型能够识别对照房屋和受真菌污染房屋之间的差异,预测能力超过84%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验