School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
Chemosphere. 2023 May;322:138164. doi: 10.1016/j.chemosphere.2023.138164. Epub 2023 Feb 17.
Polychlorinated biphenyls (PCBs) degradation by peroxymonosulfate (PMS) activation through •OH and SO radical oxidation process was the effective technology in the last decades; however, there were few research focusing on removing PCBs by O and O induced by PMS activation. In this work, 90.86% of 2,4,4-trichlorodiphenyl (PCB 28) was degraded by 0.3 g/L FeC@Fe-800 activated 0.5 mM PMS system under the synergistic action of O and O. The structures of FeC@Fe-800 were identified by Scanning electron microscope (SEM), High resolution-transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), Raman spectra and Fourier transform infrared (FT-IR) spectra. Electron paramagnetic resonance (EPR) measurements and quenching tests verified that O and O were the primary reactive species in FeC@Fe-800/PMS/PCB 28 ternary reaction system. Density functional theory (DFT), Linear sweep voltammetry (LSV), and chronoamperometry test revealed that electron-deficient Fe atoms on FeC were the main active sites in FeC@Fe-800 for PMS activation to generate O. Unlike the reported •OH and SO mediated degradation induced by the iron-based catalyst, both O and O contributed to PCB 28 degradation: nucleophilic dichlorination reaction by O and then ring-open oxidation process by O. FeC@Fe-800/PMS system had excellent catalytic performance under different reaction conditions and possessed desirable inorganic salt and natural organic matter resistance. This work elucidated the important role of FeC in PMS activation to generate O and O for PCB 28 decontamination by nonradical way and provided a clue to design rationally catalysts in polychlorinated biphenyl pollution remediation.
多氯联苯 (PCBs) 通过过一硫酸盐 (PMS) 活化产生的 •OH 和 SO 自由基氧化过程的降解是过去几十年中的有效技术;然而,很少有研究关注通过 PMS 活化产生的 O 和 O 去除 PCBs。在这项工作中,在 O 和 O 的协同作用下,0.3 g/L FeC@Fe-800 活化 0.5 mM PMS 体系可将 2,4,4-三氯二苯(PCB 28)的 90.86%降解。通过扫描电子显微镜 (SEM)、高分辨率透射电子显微镜 (HR-TEM)、X 射线光电子能谱 (XPS)、BET、拉曼光谱和傅里叶变换红外光谱 (FT-IR) 对 FeC@Fe-800 的结构进行了鉴定。电子顺磁共振 (EPR) 测量和猝灭实验验证了 O 和 O 是 FeC@Fe-800/PMS/PCB 28 三元反应体系中的主要活性物质。密度泛函理论 (DFT)、线性扫描伏安法 (LSV) 和计时安培法测试表明,FeC 上的缺电子 Fe 原子是 FeC@Fe-800 中 PMS 活化产生 O 的主要活性位点。与报道的铁基催化剂介导的 •OH 和 SO 引起的降解不同,O 和 O 都有助于 PCB 28 的降解:O 引起亲核二氯化反应,然后 O 引起开环氧化过程。在不同的反应条件下,FeC@Fe-800/PMS 体系具有优异的催化性能,并且具有良好的无机盐和天然有机物抗性。这项工作阐明了 FeC 在 PMS 活化生成 O 和 O 方面的重要作用,为非自由基方式去除 PCB 28 污染提供了线索,并为合理设计多氯联苯污染修复中的催化剂提供了线索。