State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China.
Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
Angew Chem Int Ed Engl. 2023 Apr 3;62(15):e202219048. doi: 10.1002/anie.202219048. Epub 2023 Mar 2.
Transition-metal-based oxyhydroxides are efficient catalysts in biomass electrooxidation towards fossil-fuel-free production of valuable chemicals. However, identification of active sites remains elusive. Herein, using cobalt oxyhydroxide (CoOOH) as the archetype and the electrocatalyzed glucose oxidation reaction (GOR) as the model reaction, we track dynamic transformation of the electronic and atomic structure of the catalyst using a suite of operando and ex situ techniques. We reveal that two types of reducible Co -oxo species are afforded for the GOR, including adsorbed hydroxyl on Co ion (μ -OH-Co ) and di-Co -bridged lattice oxygen (μ -O-Co ). Moreover, theoretical calculations unveil that μ -OH-Co is responsible for oxygenation, while μ -O-Co mainly contributes to dehydrogenation, both as key oxidative steps in glucose-to-formate transformation. This work provides a framework for mechanistic understanding of the complex near-surface chemistry of metal oxyhydroxides in biomass electrorefining.
基于过渡金属的氧氢氧化物是生物质电氧化中高效的催化剂,可用于无化石燃料生产有价值的化学品。然而,活性位点的鉴定仍然难以捉摸。在此,我们以钴氧氢氧化物 (CoOOH) 为原型,并以电催化葡萄糖氧化反应 (GOR) 为模型反应,使用一系列原位和非原位技术跟踪催化剂电子和原子结构的动态转变。我们揭示了 GOR 提供了两种可还原的 Co-氧物种,包括吸附在 Co 离子上的羟基 (μ-OH-Co) 和二 Co 桥连晶格氧 (μ-O-Co)。此外,理论计算揭示了 μ-OH-Co 负责氧化,而 μ-O-Co 主要负责脱氢,两者都是葡萄糖转化为甲酸盐的关键氧化步骤。这项工作为理解生物质电精炼中金属氧氢氧化物复杂的近表面化学提供了一个框架。