CIC nanoGUNE BRTA, San Sebastián, 20018, Spain.
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain.
Small Methods. 2023 Apr;7(4):e2201546. doi: 10.1002/smtd.202201546. Epub 2023 Feb 19.
Periodic superlattices of noble metal nanoparticles have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near-field coupling and constructive far-field interference. Here, a chemically driven, templated self-assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far-field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano-cluster near-field behavior, predicting the experimental findings provided by surface-enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface-enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well-defined strong hotspots.
由于近场耦合和建设性的远场干涉,贵金属纳米粒子的周期性超晶格表现出比随机分布的等离子体排列更优越的等离子体特性。在这里,研究并优化了胶体金纳米粒子的化学驱动模板自组装过程,并将该技术扩展到用于各种形状的粒子(如球体、棒和三角形)的通用组装过程。该过程在厘米范围内产生了均匀的纳米粒子团簇的周期性超晶格。电磁模拟吸收光谱和相应的实验消光测量在远场中对于所有粒子类型和不同的晶格周期都显示出极好的一致性。电磁模拟揭示了特定的纳米簇近场行为,预测了由表面增强拉曼散射测量提供的实验结果。事实证明,由于非常明确的强热点,周期性排列的球形纳米粒子比具有较少对称性的粒子产生更高的表面增强拉曼散射增强因子。