Elangovan Subhashini, Puri Surendra Raj, Madawala Hiranya, Pantano Justin, Pellock Brett, Kiesewetter Matthew K, Kim Jiyeon
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States.
Department of Biology, Providence College, Providence, Rhode Island 02981, United States.
Anal Chem. 2023 Mar 7;95(9):4271-4281. doi: 10.1021/acs.analchem.2c02626. Epub 2023 Feb 21.
Here, we report on the successful demonstration and application of carbonate (CO) ion-selective amperometric/voltammetric nanoprobes based on facilitated ion transfer (IT) at the nanoscale interface between two immiscible electrolyte solutions. This electrochemical study reveals critical factors to govern CO-selective nanoprobes using broadly available Simon-type ionophores forming a covalent bond with CO, i.e., slow dissolution of lipophilic ionophores in the organic phase, activation of hydrated ionophores, peculiar solubility of a hydrated ion-ionophore complex near the interface, and cleanness at the nanoscale interface. These factors are experimentally confirmed by nanopipet voltammetry, where a facilitated CO IT is studied with a nanopipet filled with an organic phase containing the trifluoroacetophenone derivative COionophore (COionophore VII) by voltammetrically and amperometrically sensing CO in water. Theoretical assessments of reproducible voltammetric data confirm that the dynamics of CO ionophore VII-facilitated ITs (FITs) follows the one-step electrochemical (E) mechanism controlled by both water-finger formation/dissociation and ion-ionophore complexation/dissociation during interfacial ITs. The yielded rate constant, = 0.048 cm/s, is very similar to the reported values of other FIT reactions using ionophores forming non-covalent bonds with ions, implying that a weak binding between CO ion-ionophore enables us to observe FITs by fast nanopipet voltammetry regardless of the nature of bondings between the ion and ionophore. The analytical utility of CO-selective amperometric nanoprobes is further demonstrated by measuring the CO concentration produced by metal-reducing bacteria MR-1 as a result of organic fuel oxidation in bacterial growth media in the presence of various interferents such as HPO, Cl, and SO.
在此,我们报告了基于两种不混溶电解质溶液之间纳米级界面处的促进离子转移(IT)的碳酸根(CO)离子选择性安培/伏安纳米探针的成功演示和应用。这项电化学研究揭示了使用与CO形成共价键的广泛可用的西蒙型离子载体来控制CO选择性纳米探针的关键因素,即亲脂性离子载体在有机相中的缓慢溶解、水合离子载体的活化、界面附近水合离子 - 离子载体复合物的特殊溶解度以及纳米级界面的清洁度。这些因素通过纳米吸管伏安法得到实验证实,其中通过伏安法和安培法检测水中的CO,用填充有含有三氟苯乙酮衍生物CO离子载体(CO离子载体VII)的有机相的纳米吸管研究促进的CO IT。对可重复伏安数据的理论评估证实,CO离子载体VII促进的IT(FIT)动力学遵循一步电化学(E)机制,该机制在界面IT期间由水指形成/解离和离子 - 离子载体络合/解离控制。得到的速率常数k = 0.048 cm/s,与使用与离子形成非共价键的离子载体的其他FIT反应报道的值非常相似,这意味着CO离子 - 离子载体之间的弱结合使我们能够通过快速纳米吸管伏安法观察FIT,而不管离子与离子载体之间键合的性质如何。在存在各种干扰物(如HPO、Cl和SO)的情况下,通过测量金属还原细菌MR - 1在细菌生长培养基中有机燃料氧化产生的CO浓度,进一步证明了CO选择性安培纳米探针的分析效用。