Suppr超能文献

O157:H7型大肠杆菌LuxS抑制剂的虚拟筛选与实验验证

Virtual Screening and Experimental Verification of LuxS Inhibitors for O157:H7.

作者信息

Bai Yu-Bin, Yang Xiao-Rong, Li Bing, Zhou Xu-Zheng, Wang Wei-Wei, Cheng Fu-Sheng, Zhang Ji-Yu

机构信息

Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People's Republic of China.

Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People's Republic of China.

出版信息

Microbiol Spectr. 2023 Feb 21;11(2):e0350222. doi: 10.1128/spectrum.03502-22.

Abstract

Enterohemorrhagic Escherichia coli O157:H7 is an important foodborne pathogen that forms biofilms. In this study, three quorum-sensing (QS) inhibitors (M414-3326, 3254-3286, and L413-0180) were obtained through virtual screening, and their antibiofilm activities were validated. Briefly, the three-dimensional structure model of LuxS was constructed and characterized using the SWISS-MODEL. High-affinity inhibitors were screened from the ChemDiv database (1,535,478 compounds) using LuxS as a ligand. Five compounds (L449-1159, L368-0079, M414-3326, 3254-3286, and L413-0180) with a good inhibitory effect (50% inhibitory concentration <10 μM) on type II QS signal molecule autoinducer-2 (AI-2) were obtained using a AI-2 bioluminescence assay. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties predicated that the five compounds had high intestinal absorption levels (high) and plasma protein binding (absorbent strong) and did not inhibit the metabolism of CYP2D6 metabolic enzymes. In addition, molecular dynamics simulation showed that compounds L449-1159 and L368-0079 could not stably bind with LuxS. Thus, these compounds were excluded. Furthermore, surface plasmon resonance results showed that the three compounds could specifically bind to LuxS. IN addition, the three compounds could effectively inhibit the biofilm formation without affecting the growth and metabolism of the bacteria. Finally, the reverse transcription-quantitative PCR results showed that the three compounds downregulated the expression of the LuxS gene. Overall, these results revealed that the three compounds obtained through virtual screening could inhibit biofilm formation of E. coli O157:H7 and are potential LuxS inhibitors that can be used to treat E. coli O157:H7 infections. E. coli O157:H7 is a foodborne pathogen of public health importance. Quorum sensing (QS) is a form of bacterial communication that can regulate various group behaviors, including biofilm formation. Here, we identified three QS AI-2 inhibitors (M414-3326, 3254-3286, and L413-0180) that can stably and specifically bind to LuxS protein. The three QS AI-2 inhibitors inhibited biofilm formation without affecting the growth and metabolic activity of E. coli O157:H7. The three QS AI-2 inhibitors are promising agents for treating E. coli O157:H7 infections. Further studies to identify the mechanism of the three QS AI-2 inhibitors are needed to develop new drugs to overcome antibiotic resistance.

摘要

肠出血性大肠杆菌O157:H7是一种重要的食源性病原体,能够形成生物膜。在本研究中,通过虚拟筛选获得了三种群体感应(QS)抑制剂(M414 - 3326、3254 - 3286和L413 - 0180),并验证了它们的抗生物膜活性。简要来说,使用SWISS - MODEL构建并表征了LuxS的三维结构模型。以LuxS作为配体,从ChemDiv数据库(1,535,478种化合物)中筛选出高亲和力抑制剂。使用AI - 2生物发光测定法获得了对II型QS信号分子自诱导物-2(AI - 2)具有良好抑制作用(50%抑制浓度<10 μM)的五种化合物(L449 - 1159、L368 - 0079、M414 - 3326、3254 - 3286和L413 - 0180)。吸收、分布、代谢、排泄和毒性(ADMET)特性预测这五种化合物具有高肠道吸收水平(高)和血浆蛋白结合能力(吸收强),并且不抑制CYP2D6代谢酶的代谢。此外,分子动力学模拟表明化合物L449 - 1159和L368 - 0079不能与LuxS稳定结合。因此,这些化合物被排除。此外,表面等离子体共振结果表明这三种化合物能够特异性结合LuxS。另外,这三种化合物可以有效抑制生物膜形成,而不影响细菌的生长和代谢。最后,逆转录定量PCR结果表明这三种化合物下调了LuxS基因的表达。总体而言,这些结果表明通过虚拟筛选获得的这三种化合物可以抑制大肠杆菌O157:H7的生物膜形成,并且是可用于治疗大肠杆菌O157:H7感染的潜在LuxS抑制剂。大肠杆菌O157:H7是一种具有公共卫生重要性的食源性病原体。群体感应(QS)是细菌间通讯的一种形式,可调节包括生物膜形成在内的各种群体行为。在此,我们鉴定出三种能够稳定且特异性结合LuxS蛋白的QS AI - 2抑制剂(M414 - 3326、3254 - 3286和L413 - 0180)。这三种QS AI - 2抑制剂在不影响大肠杆菌O157:H7生长和代谢活性的情况下抑制生物膜形成。这三种QS AI - 2抑制剂是治疗大肠杆菌O157:H7感染的有前景的药物。需要进一步研究以确定这三种QS AI - 2抑制剂的作用机制,从而开发新药物以克服抗生素耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8b/10100900/e1653ae119b0/spectrum.03502-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验