Suppr超能文献

新型高分辨率多电极阵列定义的空肠起搏的空间反应。

Spatial response of jejunal pacing defined by a novel high-resolution multielectrode array.

机构信息

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.

Department of Surgery, University of Auckland, Auckland, New Zealand.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2023 May 1;324(5):G329-G340. doi: 10.1152/ajpgi.00258.2022. Epub 2023 Feb 21.

Abstract

Gastric pacing has shown preclinical success in modulating bioelectrical slow-wave activity and has potential as a novel therapy for functional motility disorders. However, the translation of pacing techniques to the small intestine remains preliminary. This paper presents the first high-resolution framework for simultaneous pacing and response mapping of the small intestine. A novel surface-contact electrode array, capable of simultaneous pacing and high-resolution mapping of the pacing response, was developed and applied in vivo on the proximal jejunum of pigs. Pacing parameters including the input energy and pacing electrode orientation were systematically evaluated, and the efficacy of pacing was determined by analyzing spatiotemporal characteristics of entrained slow waves. Histological analysis was conducted to determine if the pacing resulted in tissue damage. A total of 54 studies were conducted on 11 pigs, and pacemaker propagation patterns were successfully achieved at both low (2 mA, 50 ms) and high (4 mA, 100 ms) energy levels with the pacing electrodes oriented in the antegrade, retrograde, and circumferential directions. The high energy level performed significantly better ( = 0.014) in achieving spatial entrainment. Comparable success (greater than 70%) was achieved when pacing in the circumferential and antegrade pacing directions, and no tissue damage was observed at the pacing sites. This study defined the spatial response of small intestine pacing in vivo revealing effective pacing parameters for slow-wave entrainment in the jejunum. Intestinal pacing now awaits translation to restore disordered slow-wave activity associated with motility disorders. A novel surface-contact electrode array customized for the small intestine anatomy enabled simultaneous pacing and high-resolution response mapping. The spatial response of small intestine bioelectrical activity to pacing was mapped for the first time in vivo. Antegrade and circumferential pacing achieved spatial entrainment over 70% of the time and their induced pattern was held for 4-6 cycles postpacing at high energy (4 mA, 100 ms, at ∼2.7 s which corresponds to 1.1 × intrinsic frequency).

摘要

胃起搏已在调节生物电慢波活动方面显示出临床前的成功,并有可能成为治疗功能性运动障碍的新疗法。然而,起搏技术在小肠中的转化仍然是初步的。本文提出了用于同步起搏和小肠响应映射的第一个高分辨率框架。开发了一种新的表面接触电极阵列,能够同时起搏和高分辨率地映射起搏响应,并在猪的近端空肠上进行了体内应用。系统地评估了包括输入能量和起搏电极方向在内的起搏参数,并通过分析被诱发的慢波的时空特征来确定起搏的效果。进行了组织学分析以确定起搏是否导致组织损伤。在 11 头猪上共进行了 54 项研究,在低能量(2 mA,50 ms)和高能量(4 mA,100 ms)下,以顺行、逆行和环形方向定向起搏电极,成功地实现了起搏器传播模式。高能量水平在实现空间同步方面表现明显更好(=0.014)。在环形和顺行起搏方向起搏时,成功率相当(大于 70%),并且在起搏部位未观察到组织损伤。这项研究定义了体内小肠起搏的空间响应,揭示了在空肠中诱发慢波的有效起搏参数。现在,肠道起搏等待转化以恢复与运动障碍相关的紊乱慢波活动。为小肠解剖结构定制的新型表面接触电极阵列能够同时起搏和进行高分辨率的响应映射。首次在体内映射了小肠生物电活动对起搏的空间响应。顺行和环形起搏在 70%以上的时间内实现了空间同步,并且它们在高能量(4 mA,100 ms,约 2.7 s,对应于 1.1×固有频率)下起搏后 4-6 个周期内保持诱发的模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验