Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, China.
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China.
ACS Appl Mater Interfaces. 2023 Mar 8;15(9):12088-12098. doi: 10.1021/acsami.2c19928. Epub 2023 Feb 21.
Recent developments in flexible electronics have heightened the need for electrolytes with high safety, ionic conductivity, and electrochemical stability. However, neither conventional organic electrolytes nor aqueous electrolytes can meet the above requirements simultaneously. Herein, a novel "water-in-deep eutectic solvent" gel (WIDG) electrolyte synergistically controlled by the solvation regulation and gelation strategies is reported. The water molecules introduced into deep eutectic solvent (DES) participate in the solvation structure regulation of Li, thus endowing the WIDG electrolyte with high safety, thermal stability, and outstanding electrochemical performance, including high ionic conductivity (∼1.23 mS cm) and a wide electrochemical window (∼5.4 V). Besides, the polymer in the gel interacts with DES and HO, further optimizing the electrolyte with excellent mechanical strength and higher operating voltage. Benefiting from these advantages, the lithium-ion capacitor constructed by WIDG electrolyte presents a high areal capacitance of 246 mF cm with an energy density of 87.3 μWh cm. The use of the gel enhances the electrode structure stability, resulting in desirable cycling stability (>90% capacity retention after 1400 cycles). Moreover, the WIDG-assembled sensor exhibits high sensitivity and rapid real-time detection of motion. This work will provide guidelines for designing high-safety and high-operating-voltage electrolytes for flexible electronics.
近年来,柔性电子技术的发展对高安全性、高离子电导率和电化学稳定性的电解质提出了更高的要求。然而,传统的有机电解液和水系电解液都不能同时满足上述要求。在此,我们报道了一种新型的“水在深共晶溶剂”凝胶(WIDG)电解液,它是通过溶剂化调控和凝胶化策略协同控制的。引入深共晶溶剂(DES)中的水分子参与 Li 的溶剂化结构调节,从而赋予 WIDG 电解液高安全性、热稳定性和出色的电化学性能,包括高离子电导率(1.23 mS cm)和宽电化学窗口(5.4 V)。此外,凝胶中的聚合物与 DES 和 HO 相互作用,进一步优化了具有优异机械强度和更高工作电压的电解质。得益于这些优势,由 WIDG 电解液构建的锂离子电容器具有 246 mF cm 的高面电容和 87.3 μWh cm 的能量密度。凝胶的使用增强了电极结构的稳定性,实现了理想的循环稳定性(>1400 次循环后容量保持率为 90%)。此外,WIDG 组装的传感器表现出高灵敏度和对运动的快速实时检测。这项工作将为设计用于柔性电子的高安全性和高工作电压电解液提供指导。