Suppr超能文献

LuxHMM:基于隐马尔可夫模型的基因组分割的 DNA 甲基化分析。

LuxHMM: DNA methylation analysis with genome segmentation via hidden Markov model.

机构信息

Department of Computer Science, Aalto University, 00076, Espoo, Finland.

出版信息

BMC Bioinformatics. 2023 Feb 22;24(1):58. doi: 10.1186/s12859-023-05174-7.

Abstract

BACKGROUND

DNA methylation plays an important role in studying the epigenetics of various biological processes including many diseases. Although differential methylation of individual cytosines can be informative, given that methylation of neighboring CpGs are typically correlated, analysis of differentially methylated regions is often of more interest.

RESULTS

We have developed a probabilistic method and software, LuxHMM, that uses hidden Markov model (HMM) to segment the genome into regions and a Bayesian regression model, which allows handling of multiple covariates, to infer differential methylation of regions. Moreover, our model includes experimental parameters that describe the underlying biochemistry in bisulfite sequencing and model inference is done using either variational inference for efficient genome-scale analysis or Hamiltonian Monte Carlo (HMC).

CONCLUSIONS

Analyses of real and simulated bisulfite sequencing data demonstrate the competitive performance of LuxHMM compared with other published differential methylation analysis methods.

摘要

背景

DNA 甲基化在研究包括许多疾病在内的各种生物过程的表观遗传学中起着重要作用。虽然单个胞嘧啶的差异甲基化可能具有信息性,但由于相邻 CpG 的甲基化通常是相关的,因此通常更感兴趣的是分析差异甲基化区域。

结果

我们开发了一种概率方法和软件 LuxHMM,该方法使用隐马尔可夫模型 (HMM) 将基因组分割成区域,以及贝叶斯回归模型,该模型允许处理多个协变量,以推断区域的差异甲基化。此外,我们的模型包括描述亚硫酸氢盐测序中潜在生物化学的实验参数,并使用变分推理(用于高效的基因组规模分析)或汉密尔顿蒙特卡罗(HMC)进行模型推断。

结论

对真实和模拟亚硫酸氢盐测序数据的分析表明,与其他已发表的差异甲基化分析方法相比,LuxHMM 的性能具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd18/9945676/097af524e40e/12859_2023_5174_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验