Department of Computer Science, Aalto University, 00076, Espoo, Finland.
BMC Bioinformatics. 2023 Feb 22;24(1):58. doi: 10.1186/s12859-023-05174-7.
DNA methylation plays an important role in studying the epigenetics of various biological processes including many diseases. Although differential methylation of individual cytosines can be informative, given that methylation of neighboring CpGs are typically correlated, analysis of differentially methylated regions is often of more interest.
We have developed a probabilistic method and software, LuxHMM, that uses hidden Markov model (HMM) to segment the genome into regions and a Bayesian regression model, which allows handling of multiple covariates, to infer differential methylation of regions. Moreover, our model includes experimental parameters that describe the underlying biochemistry in bisulfite sequencing and model inference is done using either variational inference for efficient genome-scale analysis or Hamiltonian Monte Carlo (HMC).
Analyses of real and simulated bisulfite sequencing data demonstrate the competitive performance of LuxHMM compared with other published differential methylation analysis methods.
DNA 甲基化在研究包括许多疾病在内的各种生物过程的表观遗传学中起着重要作用。虽然单个胞嘧啶的差异甲基化可能具有信息性,但由于相邻 CpG 的甲基化通常是相关的,因此通常更感兴趣的是分析差异甲基化区域。
我们开发了一种概率方法和软件 LuxHMM,该方法使用隐马尔可夫模型 (HMM) 将基因组分割成区域,以及贝叶斯回归模型,该模型允许处理多个协变量,以推断区域的差异甲基化。此外,我们的模型包括描述亚硫酸氢盐测序中潜在生物化学的实验参数,并使用变分推理(用于高效的基因组规模分析)或汉密尔顿蒙特卡罗(HMC)进行模型推断。
对真实和模拟亚硫酸氢盐测序数据的分析表明,与其他已发表的差异甲基化分析方法相比,LuxHMM 的性能具有竞争力。