Department of Urology and Urosurgery, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.
Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
Urol Int. 2023;107(6):583-590. doi: 10.1159/000528926. Epub 2023 Feb 22.
First external validation of the Bladder Complexity Score (BCS) for predicting complex transurethral resection of bladder tumours (TURBT).
For BCS calculation, TURBTs performed at our institution between January 2018 and December 2019 were reviewed for the presence of preoperative characteristics listed in the Bladder Complexity Checklist (BCC). Receiver operating characteristics (ROC) analysis was used for BCS validation. To establish a modified BCS (mBCS) with maximum area under the curve (AUC), multivariable logistic regression (MLR) analysis was performed with all BCC-characteristics for different definitions of complex TURBT.
723 TURBTs were included in statistical analyses. Cohort's mean BCS was 11.2 ± 2.4 points (range: 5.5-22 points). In ROC analysis, BCS could not predict complex TURBT (AUC 0.573 [95% CI: 0.517-0.628]). MLR identified tumour size (OR 2.662, p < 0.001), and tumour number > 10 (OR 6.390, p = 0.032) as sole predictors for the modified endpoint of complex TURBT defined as a procedure meeting > 1 criterion: incomplete resection, surgery > 1 h, intraoperative complication, postoperative complications Clavien-Dindo ≥ III. mBCS increased the prediction to an AUC of 0.770 (95% CI: 0.667-0.874).
In this first external validation, BCS remained an insufficient predictor of complex TURBT. mBCS requires reduced parameters, is more predictive and easier to apply in clinical practice.
首次对膀胱复杂度评分(BCS)进行外部验证,以预测经尿道膀胱肿瘤切除术(TURBT)的复杂性。
对我院 2018 年 1 月至 2019 年 12 月期间行 TURBT 的患者进行回顾性研究,评估术前特征是否存在于膀胱复杂度检查表(BCC)中。采用受试者工作特征(ROC)曲线分析进行 BCS 验证。为了建立具有最大曲线下面积(AUC)的改良 BCS(mBCS),采用多变量逻辑回归(MLR)分析所有 BCC 特征,以不同的复杂 TURBT 定义为标准。
共纳入 723 例 TURBT 进行统计分析。队列的平均 BCS 为 11.2±2.4 分(范围:5.5-22 分)。ROC 分析表明,BCS 无法预测复杂 TURBT(AUC 0.573 [95%CI:0.517-0.628])。MLR 确定肿瘤大小(OR 2.662,p<0.001)和肿瘤数量>10(OR 6.390,p=0.032)为复杂 TURBT 的改良终点的唯一预测因子,该终点定义为符合>1 个标准的手术:不完全切除、手术时间>1 小时、术中并发症、术后并发症 Clavien-Dindo≥III 级。mBCS 将预测值提高至 AUC 为 0.770(95%CI:0.667-0.874)。
在首次外部验证中,BCS 仍然是预测复杂 TURBT 的不足的指标。mBCS 需要减少参数,更具预测性,并且在临床实践中更容易应用。