Suppr超能文献

新冠疫情口罩垃圾的密度变异性:关于大流行期间个人防护装备废弃物监测的警示故事。

Density variability of COVID-19 face mask litter: A cautionary tale for pandemic PPE waste monitoring.

作者信息

France Robert L, Heung Brandon

机构信息

Department of Plants, Food and Environmental Science, Dalhousie University, Truro, Nova Scotia, Canada, B2N 5E3.

出版信息

J Hazard Mater Adv. 2023 Feb;9:100220. doi: 10.1016/j.hazadv.2022.100220. Epub 2022 Dec 17.

Abstract

Despite the requirement for data to be normally distributed with variance being independent of the mean, some studies of plastic litter, including COVID-19 face masks, have not tested for these assumptions before embarking on analyses using parametric statistics. Investigation of new data and secondary analyses of published literature data indicate that face masks are not normally distributed and that variances are not independent of mean densities. In consequence, it is necessary to either use nonparametric analyses or to transform data prior to undertaking parametric approaches. For the new data set, spatial and temporal variance functions indicate that according to Taylor's Power Law, the fourth-root transformation will offer most promise for stabilizing variance about the mean.

摘要

尽管要求数据呈正态分布且方差与均值无关,但一些关于塑料垃圾的研究,包括新冠疫情期间的口罩,在使用参数统计进行分析之前并未对这些假设进行检验。对新数据的调查以及对已发表文献数据的二次分析表明,口罩的分布并非正态,且方差与平均密度并非无关。因此,有必要要么使用非参数分析,要么在采用参数方法之前对数据进行转换。对于新数据集,空间和时间方差函数表明,根据泰勒幂定律,四次方根变换对于稳定均值周围的方差最有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd0/9758072/68183283934e/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验