Université Lyon, Université Claude Bernard Lyon 1 , CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle , Lyon, France.
Therassay Platform, CAPACITES, Université de Nantes , Nantes, France.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213203. Epub 2023 Feb 23.
Tight control of skeletal muscle contractile activation is secured by the excitation-contraction (EC) coupling protein complex, a molecular machinery allowing the plasma membrane voltage to control the activity of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. This machinery has been shown to be intimately linked to the plasma membrane protein pannexin-1 (Panx1). We investigated whether the prescription drug probenecid, a widely used Panx1 blocker, affects Ca2+ signaling, EC coupling, and muscle force. The effect of probenecid was tested on membrane current, resting Ca2+, and SR Ca2+ release in isolated mouse muscle fibers, using a combination of whole-cell voltage-clamp and Ca2+ imaging, and on electrically triggered contraction of isolated muscles. Probenecid (1 mM) induces SR Ca2+ leak at rest and reduces peak voltage-activated SR Ca2+ release and contractile force by 40%. Carbenoxolone, another Panx1 blocker, also reduces Ca2+ release, but neither a Panx1 channel inhibitory peptide nor a purinergic antagonist affected Ca2+ release, suggesting that probenecid and carbenoxolone do not act through inhibition of Panx1-mediated ATP release and consequently altered purinergic signaling. Probenecid may act by altering Panx1 interaction with the EC coupling machinery, yet the implication of another molecular target cannot be excluded. Since probenecid has been used both in the clinic and as a masking agent for doping in sports, these results should encourage evaluation of possible effects on muscle function in treated individuals. In addition, they also raise the question of whether probenecid-induced altered Ca2+ homeostasis may be shared by other tissues.
骨骼肌收缩激活的紧密控制是通过兴奋-收缩(EC)偶联蛋白复合体来实现的,该分子机制允许质膜电压控制肌浆网(SR)膜上的ryanodine 受体 Ca2+释放通道的活性。该机制已被证明与质膜蛋白 Panx1 密切相关。我们研究了处方药物丙磺舒(一种广泛使用的 Panx1 阻断剂)是否会影响 Ca2+信号、EC 偶联和肌肉力量。使用全细胞膜片钳和 Ca2+成像技术的组合,在分离的小鼠肌纤维中测试了丙磺舒对膜电流、静息 Ca2+和 SR Ca2+释放的影响,并测试了分离肌肉的电触发收缩。丙磺舒(1 mM)在静息时诱导 SR Ca2+泄漏,并使峰值电压激活的 SR Ca2+释放和收缩力降低 40%。另一种 Panx1 阻断剂 carbenoxolone 也降低了 Ca2+释放,但 Panx1 通道抑制肽和嘌呤能拮抗剂都没有影响 Ca2+释放,这表明丙磺舒和 carbenoxolone 不是通过抑制 Panx1 介导的 ATP 释放和随后改变嘌呤能信号来起作用的。丙磺舒可能通过改变 Panx1 与 EC 偶联机制的相互作用来起作用,但不能排除它作用于另一个分子靶点的可能性。由于丙磺舒既在临床上使用,也被用作运动中的兴奋剂掩蔽剂,因此这些结果应该鼓励评估其对治疗个体肌肉功能的可能影响。此外,它们还提出了一个问题,即丙磺舒诱导的 Ca2+稳态改变是否可能与其他组织共享。