Vollum Institute, Oregon Health & Science University, Portland, OR, USA. Electronic address: https://twitter.com/@megancphd.
Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
Curr Opin Neurobiol. 2023 Apr;79:102689. doi: 10.1016/j.conb.2023.102689. Epub 2023 Feb 21.
The importance of glial cells has become increasingly apparent over the past 20 years, yet compared to neurons we still know relatively little about these essential cells. Most critical glial cell functions are conserved in Drosophila glia, often using the same key molecular players as their vertebrate counterparts. The relative simplicity of the Drosophila nervous system, combined with a vast array of powerful genetic tools, allows us to further dissect the molecular composition and functional roles of glia in ways that would be much more cumbersome or not possible in higher vertebrate systems. Importantly, Drosophila genetics allow for in vivo manipulation, and their transparent body wall enables in vivo imaging of glia in intact animals throughout early development. Here we discuss recent advances in Drosophila glial development detailing how these cells take on their mature morphologies and interact with neurons to perform their important functional roles in the nervous system.
在过去的 20 年中,神经胶质细胞的重要性变得越来越明显,但与神经元相比,我们对这些基本细胞的了解仍然相对较少。在果蝇神经胶质细胞中,大多数关键的神经胶质细胞功能都得到了保守,通常使用与脊椎动物相同的关键分子。果蝇神经系统相对简单,结合大量强大的遗传工具,使我们能够以更高等脊椎动物系统中更为繁琐或不可能的方式进一步剖析神经胶质细胞的分子组成和功能作用。重要的是,果蝇遗传学允许进行体内操作,其透明的体壁使我们能够在整个早期发育过程中对完整动物体内的神经胶质细胞进行体内成像。在这里,我们讨论了果蝇神经胶质细胞发育的最新进展,详细介绍了这些细胞如何获得成熟的形态,并与神经元相互作用,从而在神经系统中发挥其重要的功能作用。