Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
J Am Chem Soc. 2023 Mar 8;145(9):5410-5421. doi: 10.1021/jacs.2c13666. Epub 2023 Feb 24.
We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of scanning transmission electron microscopy, X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.
我们报告了一种制备高单分散性 Cu-Pt 合金纳米粒子的方法。通过在 300°C 下进行胶体合成,可以得到 Cu/Pt 比为 1:1 的小尺寸和大尺寸的 Cu-Pt 粒子。新鲜粒子具有富 Pt 的表面和富 Cu 的核,并且在 800°C 下 H 中退火后可以转化为金属间相。首先,我们证明了新鲜粒子在 400°C 下氧化还原条件下的稳定性,因为富 Pt 的表面阻止了 Cu 的大量氧化。然后,通过对金属间相 CuPt 相在 800°C 下进行氧化还原处理前后的扫描透射电子显微镜、X 射线吸收光谱和 CO 氧化测量的组合,显示出在 CO 氧化方面具有有前途的活性和稳定性。在 800°C 下暴露于 O 后,Cu 完全被阻止氧化。在 800°C 下暴露于 O 后,颗粒的活性和结构仅略有变化,并且在 800°C 下重新还原后得到恢复。此外,与具有富 Pt 表面的新鲜粒子或相同尺寸的纯 Pt 粒子相比,金属间相 CuPt 相表现出增强的催化性能。因此,与其他双金属体系不同,Cu 与 Pt 的结合不会导致材料的快速失活和降解。这项工作提供了一种控制 Cu-Pt 纳米结构设计的合成途径,并强调了这些合金(金属间相和非金属间相)在多相催化中的有前途的性质。