Suppr超能文献

随机波动下具有爆发神经元模型的宏观伽马振荡

Macroscopic Gamma Oscillation With Bursting Neuron Model Under Stochastic Fluctuation.

作者信息

Yoshikai Yuto, Zheng Tianyi, Kotani Kiyoshi, Jimbo Yasuhiko

机构信息

Graduate School of Engineering, University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan

Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan

出版信息

Neural Comput. 2023 Mar 18;35(4):645-670. doi: 10.1162/neco_a_01570.

Abstract

Gamma oscillations are thought to play a role in information processing in the brain. Bursting neurons, which exhibit periodic clusters of spiking activity, are a type of neuron that are thought to contribute largely to gamma oscillations. However, little is known about how the properties of bursting neurons affect the emergence of gamma oscillation, its waveforms, and its synchronized characteristics, especially when subjected to stochastic fluctuations. In this study, we proposed a bursting neuron model that can analyze the bursting ratio and the phase response function. Then we theoretically analyzed the neuronal population dynamics composed of bursting excitatory neurons, mixed with inhibitory neurons. The bifurcation analysis of the equivalent Fokker-Planck equation exhibits three types of gamma oscillations of unimodal firing, bimodal firing in the inhibitory population, and bimodal firing in the excitatory population under different interaction strengths. The analyses of the macroscopic phase response function by the adjoint method of the Fokker-Planck equation revealed that the inhibitory doublet facilitates synchronization of the high-frequency oscillations. When we keep the strength of interactions constant, decreasing the bursting ratio of the individual neurons increases the relative high-gamma component of the populational phase-coupling functions. This also improves the ability of the neuronal population model to synchronize with faster oscillatory input. The analytical frameworks in this study provide insight into nontrivial dynamics of the population of bursting neurons, which further suggest that bursting neurons have an important role in rhythmic activities.

摘要

伽马振荡被认为在大脑的信息处理中发挥作用。爆发性神经元表现出周期性的尖峰活动簇,是一种被认为在很大程度上促成伽马振荡的神经元类型。然而,关于爆发性神经元的特性如何影响伽马振荡的出现、其波形及其同步特性,尤其是在受到随机波动影响时,人们知之甚少。在本研究中,我们提出了一个能够分析爆发率和相位响应函数的爆发性神经元模型。然后,我们从理论上分析了由爆发性兴奋性神经元与抑制性神经元混合组成的神经元群体动力学。等效福克 - 普朗克方程的分岔分析显示,在不同的相互作用强度下,存在单峰放电、抑制性群体中的双峰放电以及兴奋性群体中的双峰放电这三种类型的伽马振荡。通过福克 - 普朗克方程的伴随方法对宏观相位响应函数的分析表明,抑制性双峰促进高频振荡的同步。当我们保持相互作用强度不变时,降低单个神经元的爆发率会增加群体相位耦合函数的相对高伽马分量。这也提高了神经元群体模型与更快振荡输入同步的能力。本研究中的分析框架为爆发性神经元群体的非平凡动力学提供了见解,这进一步表明爆发性神经元在节律活动中具有重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验