Suppr超能文献

预测韩国青少年自杀意念的因素:一种机器学习方法。

Predictors of suicide ideation among South Korean adolescents: A machine learning approach.

机构信息

Boston University, Department of Counseling Psychology and Applied Human Development, USA.

Seoul National University, Department of Social Welfare, South Korea.

出版信息

J Affect Disord. 2023 May 15;329:557-565. doi: 10.1016/j.jad.2023.02.079. Epub 2023 Feb 23.

Abstract

BACKGROUND

The current study developed a predictive model for suicide ideation among South Korean (Korean) adolescents using a comprehensive set of factors across demographic, physical and mental health, academic, social, and behavioral domains. The aim of this study was to address the pressing public health concerns of adolescent suicide in Korea and the methodological limitations of suicidal research.

METHODS

This study used machine learning methods (decision tree, logistic regression, naive Bayes classifier) to improve the accuracy of predicting suicidal ideation and related factors among a nationally representative sample of Korean middle school students (N = 6666).

RESULTS

Factors within all domains, including demographic characteristics, physical and mental health, and academic, social, and behavioral, were important in predicting suicidal thoughts among Korean adolescents, with mental health being the most important factor.

LIMITATIONS

The predictive model of the current research does not infer causality, and there may have been some loss of information due to measurement issues.

CONCLUSIONS

Study results provide insights for taking a multidimensional approach when identifying adolescents at risk of suicide, which may be used to further address their needs through intervention programs within the school setting. Considering the cultural stigma attached to disclosing suicidal ideation and behavior, the current study proposes the need for a preventive screening process based on the observation and assessment of adolescents' general characteristics and experiences in everyday life.

摘要

背景

本研究使用涵盖人口统计学、身心健康、学业、社交和行为等领域的综合因素,为韩国青少年自杀意念开发了一个预测模型。本研究旨在解决韩国青少年自杀这一紧迫的公共卫生问题,以及自杀研究中的方法学限制。

方法

本研究使用机器学习方法(决策树、逻辑回归、朴素贝叶斯分类器),以提高对韩国中学生(n=6666)全国代表性样本中自杀意念及相关因素的预测准确性。

结果

所有领域的因素,包括人口统计学特征、身心健康以及学业、社交和行为,都对韩国青少年自杀念头的预测很重要,心理健康是最重要的因素。

局限性

当前研究的预测模型不能推断因果关系,并且由于测量问题,可能会有一些信息丢失。

结论

研究结果为识别有自杀风险的青少年提供了一个多维方法的见解,这可能通过在学校环境中开展干预项目来进一步满足他们的需求。考虑到对自杀意念和行为的披露所带来的文化耻辱感,本研究提出了基于对青少年日常生活中一般特征和经历的观察和评估的预防筛选过程的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验