Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Centre for Conservation and Restoration Science, Edinburgh Napier University Sighthill Campus, Edinburgh, UK.
Nat Commun. 2023 Feb 24;14(1):1045. doi: 10.1038/s41467-023-36610-0.
Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.
微生物群落通过生理适应和组成转变来响应温度。热选择酶是否能解释海洋微生物组对温度的响应仍未得到解决。通过量化来自爱尔兰海到红海南部的海洋沉积物微生物组中 7 种功能独立的酶类(酯酶、外二醇双加氧酶、磷酸酶、β-半乳糖苷酶、核酸酶、转氨酶和醛酮还原酶)的天然蛋白质组中的热行为,我们记录到所有情况下平均年温度(MAT)对酶反应有显著影响。来自全球 70 个地点的沉积物和海水中的 228 种酯酶和 5 种外二醇双加氧酶的活性和稳定性曲线验证了这种热模式。将酯酶相变温度建模为结构灵活性的度量标准,证实了与 MAT 的观察到的关系。此外,当考虑到 MAT 没有显著差异的地点的温度变异性时,在具有最宽年度温度变异性的样本中,酶的热行为最广泛,富集的异养细菌的生长可塑性最高。这些结果表明,温度驱动的酶选择塑造了微生物组的热可塑性,而温度变异性精细地调整了这些过程,在预测微生物群落的热反应时,应与 MAT 一起考虑。