Suppr超能文献

障碍物下基于软演员-评论家的自适应聚焦

Soft Actor-Critic-Driven Adaptive Focusing under Obstacles.

作者信息

Lu Huan, Zhu Rongrong, Wang Chi, Hua Tianze, Zhang Siqi, Chen Tianhang

机构信息

Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.

School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China.

出版信息

Materials (Basel). 2023 Feb 6;16(4):1366. doi: 10.3390/ma16041366.

Abstract

Electromagnetic (EM) waves that bypass obstacles to achieve focus at arbitrary positions are of immense significance to communication and radar technologies. Small-sized and low-cost metasurfaces enable the accomplishment of this function. However, the magnitude-phase characteristics are challenging to analyze when there are obstacles between the metasurface and the EM wave. In this study, we creatively combined the deep reinforcement learning algorithm soft actor-critic (SAC) with a reconfigurable metasurface to construct an SAC-driven metasurface architecture that realizes focusing at any position under obstacles using real-time simulation data. The learns the optimal policy to achieve focus while interacting with a complex environment, and the framework proves to be effective even in complex scenes with multiple objects. Driven by real-time reinforcement learning, the knowledge learned from one environment can be flexibly transferred to another environment to maximize information utilization and save considerable iteration time. In the context of future 6G communications development, the proposed method may significantly reduce the path loss of users in an occluded state, thereby solving the open challenge of poor signal penetration. Our study may also inspire the implementation of other intelligent devices.

摘要

能够绕过障碍物并在任意位置实现聚焦的电磁波对通信和雷达技术具有极其重要的意义。小型化且低成本的超表面能够实现这一功能。然而,当超表面与电磁波之间存在障碍物时,幅度-相位特性的分析具有挑战性。在本研究中,我们创造性地将深度强化学习算法软演员-评论家(SAC)与可重构超表面相结合,构建了一种由SAC驱动的超表面架构,该架构利用实时仿真数据在障碍物情况下实现任意位置的聚焦。其在与复杂环境交互时学习到实现聚焦的最优策略,并且该框架即使在存在多个物体的复杂场景中也被证明是有效的。在实时强化学习的驱动下,从一个环境中学到的知识可以灵活地转移到另一个环境中,以最大化信息利用率并节省大量迭代时间。在未来6G通信发展的背景下,所提出 的方法可能会显著降低处于遮挡状态的用户的路径损耗,从而解决信号穿透性差这一开放性挑战。我们的研究也可能会激发其他智能设备的实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cb/9959240/c70b78433997/materials-16-01366-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验