Suppr超能文献

用于动态无线信道管理的稳态神经超表面

Homeostatic neuro-metasurfaces for dynamic wireless channel management.

作者信息

Fan Zhixiang, Qian Chao, Jia Yuetian, Wang Zhedong, Ding Yinzhang, Wang Dengpan, Tian Longwei, Li Erping, Cai Tong, Zheng Bin, Kaminer Ido, Chen Hongsheng

机构信息

Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China.

ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Zhejiang University, Hangzhou 310027, China.

出版信息

Sci Adv. 2022 Jul 8;8(27):eabn7905. doi: 10.1126/sciadv.abn7905. Epub 2022 Jul 6.

Abstract

The physical basis of a smart city, the wireless channel, plays an important role in coordinating functions across a variety of systems and disordered environments, with numerous applications in wireless communication. However, conventional wireless channel typically necessitates high-complexity and energy-consuming hardware, and it is hindered by lengthy and iterative optimization strategies. Here, we introduce the concept of homeostatic neuro-metasurfaces to automatically and monolithically manage wireless channel in dynamics. These neuro-metasurfaces relieve the heavy reliance on traditional radio frequency components and embrace two iconic traits: They require no iterative computation and no human participation. In doing so, we develop a flexible deep learning paradigm for the global inverse design of large-scale metasurfaces, reaching an accuracy greater than 90%. In a full perception-decision-action experiment, our concept is demonstrated through a preliminary proof-of-concept verification and an on-demand wireless channel management. Our work provides a key advance for the next generation of electromagnetic smart cities.

摘要

智慧城市的物理基础——无线信道,在协调各种系统和无序环境中的功能方面发挥着重要作用,在无线通信中有众多应用。然而,传统无线信道通常需要高复杂度和高能耗的硬件,并且受到冗长且迭代的优化策略的阻碍。在此,我们引入稳态神经超表面的概念,以自动且整体地动态管理无线信道。这些神经超表面减轻了对传统射频组件的严重依赖,并具有两个标志性特征:它们无需迭代计算,也无需人工参与。通过这样做,我们为大规模超表面的全局逆向设计开发了一种灵活的深度学习范式,准确率超过90%。在一个完整的感知 - 决策 - 行动实验中,我们的概念通过初步的概念验证和按需无线信道管理得到了证明。我们的工作为下一代电磁智慧城市提供了关键进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验