Yin Allice Tan Mun, Rahim Shayfull Zamree Abd, Al Bakri Abdullah Mohd Mustafa, Nabialek Marcin, Abdellah Abdellah El-Hadj, Rennie Allan, Tahir Muhammad Faheem Mohd, Titu Aurel Mihail
Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia.
Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia.
Materials (Basel). 2023 Feb 19;16(4):1724. doi: 10.3390/ma16041724.
The investigation of mould inserts in the injection moulding process using metal epoxy composite (MEC) with pure metal filler particles is gaining popularity among researchers. Therefore, to attain zero emissions, the idea of recycling metal waste from industries and workshops must be investigated (waste free) because metal recycling conserves natural resources while requiring less energy to manufacture new products than virgin raw materials would. The utilisation of metal scrap for rapid tooling (RT) in the injection moulding industry is a fascinating and potentially viable approach. On the other hand, epoxy that can endure high temperatures (>220 °C) is challenging to find and expensive. Meanwhile, industrial scrap from coal-fired power plants can be a precursor to creating geopolymer materials with desired physical and mechanical qualities for RT applications. One intriguing attribute of geopolymer is its ability to endure temperatures up to 1000 °C. Nonetheless, geopolymer has a higher compressive strength of 60-80 MPa (8700-11,600 psi) than epoxy (68.95 MPa) (10,000 psi). Aside from its low cost, geopolymer offers superior resilience to harsh environments and high compressive and flexural strength. This research aims to investigate the possibility of generating a new sustainable material by integrating several types of metals in green geopolymer metal composite (GGMC) mould inserts for RT in the injection moulding process. It is necessary to examine and investigate the optimal formulation of GGMC as mould inserts for RT in the injection moulding process. With less expensive and more ecologically friendly components, the GGMC is expected to be a superior choice as a mould insert for RT. This research substantially impacts environmental preservation, cost reduction, and maintaining and sustaining the metal waste management system. As a result of the lower cost of recycled metals, sectors such as mould-making and machining will profit the most.
使用含有纯金属填料颗粒的金属环氧复合材料(MEC)对注塑成型过程中的模具镶件进行研究,在研究人员中越来越受欢迎。因此,为了实现零排放,必须研究从工业和车间回收金属废料的想法(无废料),因为金属回收既能保护自然资源,又比使用原生原材料制造新产品所需的能源更少。在注塑成型行业中,将金属废料用于快速成型(RT)是一种引人入胜且具有潜在可行性的方法。另一方面,能够承受高温(>220°C)的环氧树脂很难找到且价格昂贵。与此同时,燃煤发电厂的工业废料可以成为制造具有用于RT应用所需物理和机械性能的地质聚合物材料的前驱体。地质聚合物的一个有趣特性是它能够承受高达1000°C的温度。尽管如此,地质聚合物的抗压强度为60 - 80 MPa(8700 - 11,600 psi),高于环氧树脂的抗压强度(68.95 MPa,10,000 psi)。除了成本低之外,地质聚合物还具有卓越的耐恶劣环境性能以及高抗压和抗弯强度。本研究旨在探讨在注塑成型过程中,将几种类型的金属整合到绿色地质聚合物金属复合材料(GGMC)模具镶件中以实现快速成型的可能性。有必要研究和考察GGMC作为注塑成型过程中快速成型模具镶件的最佳配方。由于其成分成本更低且更环保,预计GGMC作为快速成型的模具镶件将是一个更好的选择。本研究对环境保护、成本降低以及维持和支撑金属废料管理系统具有重大影响。由于回收金属成本较低,模具制造和加工等行业将受益最大。