Suppr超能文献

搏动血流中红细胞的生物力学评估

Biomechanical Assessment of Red Blood Cells in Pulsatile Blood Flows.

作者信息

Kang Yang Jun

机构信息

Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.

出版信息

Micromachines (Basel). 2023 Jan 26;14(2):317. doi: 10.3390/mi14020317.

Abstract

As rheological properties are substantially influenced by red blood cells (RBCs) and plasma, the separation of their individual contributions in blood is essential. The estimation of multiple rheological factors is a critical issue for effective early detection of diseases. In this study, three rheological properties (i.e., viscoelasticity, RBC aggregation, and blood junction pressure) are measured by analyzing the blood velocity and image intensity in a microfluidic device. Using a single syringe pump, the blood flow rate sets to a pulsatile flow pattern ([] = 1 + 0.5 sin(2π/240) mL/h). Based on the discrete fluidic circuit model, the analytical formula of the time constant () as viscoelasticity is derived and obtained at specific time intervals by analyzing the pulsatile blood velocity. To obtain RBC aggregation by reducing blood velocity substantially, an air compliance unit (ACU) is used to connect polyethylene tubing (i.d. = 250 µm, length = 150 mm) to the blood channel in parallel. The RBC aggregation index (AI) is obtained by analyzing the microscopic image intensity. The blood junction pressure () is obtained by integrating the blood velocity within the ACU. As a demonstration, the present method is then applied to detect either RBC-aggregated blood with different concentrations of dextran solution or hardened blood with thermally shocked RBCs. Thus, it can be concluded that the present method has the ability to consistently detect differences in diluent or RBCs in terms of three rheological properties.

摘要

由于流变学特性受红细胞(RBCs)和血浆的显著影响,因此区分它们在血液中的各自贡献至关重要。对多种流变学因素进行评估是有效早期疾病检测的关键问题。在本研究中,通过分析微流控装置中的血流速度和图像强度来测量三种流变学特性(即粘弹性、红细胞聚集和血液连接压力)。使用单个注射泵,将血流速率设置为脉动流模式([] = 1 + 0.5 sin(2π/240) mL/h)。基于离散流体电路模型,通过分析脉动血流速度,推导得出粘弹性时间常数()的解析公式,并在特定时间间隔内获得该公式。为了通过大幅降低血流速度来获得红细胞聚集,使用空气顺应性单元(ACU)将聚乙烯管(内径 = 250 µm,长度 = 150 mm)与血液通道并联连接。通过分析微观图像强度获得红细胞聚集指数(AI)。通过对ACU内的血流速度进行积分来获得血液连接压力()。作为演示,本方法随后被应用于检测含有不同浓度葡聚糖溶液的红细胞聚集血液或热休克红细胞的硬化血液。因此,可以得出结论,本方法有能力在三种流变学特性方面持续检测稀释剂或红细胞的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c6a/9958583/d30451dba35c/micromachines-14-00317-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验