Suppr超能文献

通过三维纳米打印设计制备脂质构建体。

Production of Lipid Constructs by Design via Three-Dimensional Nanoprinting.

作者信息

Huang Yuqi, Karsai Arpad, Sambre Pallavi D, Su Wan-Chih, Faller Roland, Parikh Atul N, Liu Gang-Yu

机构信息

Department of Chemistry, University of California, Davis, CA 95616, USA.

Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA.

出版信息

Micromachines (Basel). 2023 Feb 2;14(2):372. doi: 10.3390/mi14020372.

Abstract

Atomic force microscopy (AFM) in conjunction with microfluidic delivery was utilized to produce three-dimensional (3D) lipid structures following a custom design. While AFM is well-known for its spatial precision in imaging and 2D nanolithography, the development of AFM-based nanotechnology into 3D nanoprinting requires overcoming the technical challenges of controlling material delivery and interlayer registry. This work demonstrates the concept of 3D nanoprinting of amphiphilic molecules such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Various formulations of POPC solutions were tested to achieve point, line, and layer-by-layer material delivery. The produced structures include nanometer-thick disks, long linear spherical caps, stacking grids, and organizational chiral architectures. The POPC molecules formed stacking bilayers in these constructions, as revealed by high-resolution structural characterizations. The 3D printing reached nanometer spatial precision over a range of 0.5 mm. The outcomes reveal the promising potential of our designed technology and methodology in the production of 3D structures from nanometer to continuum, opening opportunities in biomaterial sciences and engineering, such as in the production of 3D nanodevices, chiral nanosensors, and scaffolds for tissue engineering and regeneration.

摘要

原子力显微镜(AFM)结合微流体输送技术,按照定制设计用于制备三维(3D)脂质结构。虽然AFM在成像和二维纳米光刻方面的空间精度广为人知,但将基于AFM的纳米技术发展为三维纳米打印需要克服控制材料输送和层间配准的技术挑战。这项工作展示了两亲性分子如1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)的三维纳米打印概念。测试了各种POPC溶液配方,以实现点、线和逐层材料输送。所产生的结构包括纳米厚的圆盘、长线性球冠、堆叠网格和组织手性结构。高分辨率结构表征表明,POPC分子在这些结构中形成了堆叠双层。三维打印在0.5毫米范围内达到了纳米空间精度。这些结果揭示了我们设计的技术和方法在从纳米到连续体的三维结构生产中的广阔潜力,为生物材料科学和工程领域带来了机遇,例如在三维纳米器件、手性纳米传感器以及组织工程和再生支架的生产中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5027/9963025/282aca356c34/micromachines-14-00372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验