Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
ACS Appl Mater Interfaces. 2021 Nov 3;13(43):50774-50784. doi: 10.1021/acsami.1c15166. Epub 2021 Oct 22.
The creation of biologically inspired artificial membranes on substrates with custom size and in close proximity to each other not only provides a platform to study biological processes in a simplified manner, but they also constitute building blocks for chemical or biological sensors integrated in microfluidic devices. Scanning probe lithography tools such as dip-pen nanolithography (DPN) have opened a new paradigm in this regard, although they possess some inherent drawbacks like the need to operate in air environment or the limited choice of lipids that can be patterned. In this work, we propose the use of the fluid force microscopy (FluidFM) technology to fabricate biomimetic membranes without losing the multiplexing capability of DPN but gaining flexibility in lipid inks and patterning environment. We shed light on the driving mechanisms of the FluidFM-mediated lithography processes in air and liquid. The obtained results should prompt the creation of more realistic biomimetic membranes with arbitrary complex phospholipid mixtures, cholesterol, and potential functional membrane proteins directly patterned in physiological environment.
在具有自定义尺寸且彼此靠近的衬底上创建受生物启发的人工膜,不仅为简化方式研究生物过程提供了平台,而且为集成在微流控设备中的化学或生物传感器构建了基本单元。扫描探针光刻工具,如蘸笔纳米光刻(DPN),在这方面开创了一个新的范例,尽管它们具有一些固有缺点,例如需要在空气环境中操作或可图案化的脂质选择有限。在这项工作中,我们提出使用流体力显微镜(FluidFM)技术来制造仿生膜,而不会失去 DPN 的多路复用能力,同时在脂质油墨和图案化环境方面获得灵活性。我们阐明了在空气和液体中进行 FluidFM 介导的光刻过程的驱动机制。所获得的结果应该会促使创建具有任意复杂的磷脂混合物、胆固醇和潜在功能膜蛋白的更逼真的仿生膜,这些膜蛋白可直接在生理环境中进行图案化。