Chakraborty Kunal, Medikondu Nageswara Rao, Duraisamy Kumutha, Soliman Naglaa F, El-Shafai Walid, Lavadiya Sunil, Paul Samrat, Das Sudipta
Advanced Materials Research and Energy Application Laboratory, Department of Energy Engineering, North-Eastern Hill University, Shillong 793022, India.
Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India.
Micromachines (Basel). 2023 Feb 14;14(2):447. doi: 10.3390/mi14020447.
The present research work represents the numerical study of the device performance of a lead-free CsTiIBr-based mixed halide perovskite solar cell (PSC), where x = 1 to 5. The open circuit voltage (V) and short circuit current (J) in a generic TCO/electron transport layer (ETL)/absorbing layer/hole transfer layer (HTL) structure are the key parameters for analyzing the device performance. The entire simulation was conducted by a SCAPS-1D (solar cell capacitance simulator- one dimensional) simulator. An alternative FTO/CdS/CsTiIBr/CuSCN/Ag solar cell architecture has been used and resulted in an optimized absorbing layer thickness at 0.5 µm thickness for the CsTiBr, CsTiIBr, CsTiIBr, CsTiIBr and CsTiIBr absorbing materials and at 1.0 µm and 0.4 µm thickness for the CsTiIBr and CsTiI absorbing materials. The device temperature was optimized at 40 °C for the CsTiBr, CsTiIBr and CsTiIBr absorbing layers and at 20 °C for the CsTiIBr, CsTiIBr, CsTiIBr and CsTiI absorbing layers. The defect density was optimized at 10 (cm) for all the active layers.
本研究工作是对基于无铅CsTiIBr的混合卤化物钙钛矿太阳能电池(PSC)的器件性能进行数值研究,其中x = 1至5。在通用的透明导电氧化物(TCO)/电子传输层(ETL)/吸收层/空穴传输层(HTL)结构中,开路电压(V)和短路电流(J)是分析器件性能的关键参数。整个模拟由SCAPS - 1D(一维太阳能电池电容模拟器)模拟器进行。采用了一种替代的FTO/CdS/CsTiIBr/CuSCN/Ag太阳能电池结构,对于CsTiBr、CsTiIBr、CsTiIBr、CsTiIBr和CsTiIBr吸收材料,优化后的吸收层厚度为0.5 µm,对于CsTiIBr和CsTiI吸收材料,厚度分别为1.0 µm和0.4 µm。对于CsTiBr、CsTiIBr和CsTiIBr吸收层,器件温度优化为40°C,对于CsTiIBr、CsTiIBr、CsTiIBr和CsTiI吸收层,器件温度优化为20°C。所有活性层的缺陷密度优化为10⁻⁶(cm⁻³)。