Verner Adam, Tokarský Jonáš, Najser Tomáš, Matějová Lenka, Kutláková Kateřina Mamulová, Kielar Jan, Peer Václav
Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
ENET Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
Nanomaterials (Basel). 2023 Feb 14;13(4):724. doi: 10.3390/nano13040724.
Dangerous gases arising from combustion processes must be removed from the air simply and cheaply, e.g., by adsorption. This work is focused on competitive adsorption experiments and force field-based molecular modeling of the interactions at the molecular level. Emission gas, containing CO, NO, SO, and CO, was adsorbed on activated carbon, clay mineral, silicon dioxide, cellulose, or polypropylene at two different temperatures. At 20 °C, activated carbon had the highest NO and SO adsorption capacity (120.83 and 3549.61 μg/g, respectively). At 110 °C, the highest NO and SO adsorption capacity (6.20 and 1182.46 μg/g, respectively) was observed for clay. CO was adsorbed very weakly, CO not at all. SO was adsorbed better than NO, which correlated with modeling results showing positive influence of carboxyl and hydroxyl functional groups on the adsorption. In addition to the wide range of adsorbents, the main novelty of this study is the modeling strategy enabling the simulation of surfaces with pores of controllable sizes and shapes, and the agreement of the results achieved by this strategy with the results obtained by more computationally demanding methods. Moreover, the agreement with experimental data shows the modeling strategy to be a valuable tool for further adsorption studies.
燃烧过程中产生的危险气体必须以简单且经济的方式从空气中去除,例如通过吸附。这项工作聚焦于竞争吸附实验以及基于力场的分子水平相互作用的分子建模。含有一氧化碳、一氧化氮、二氧化硫和二氧化碳的排放气体在两种不同温度下被吸附在活性炭、粘土矿物、二氧化硅、纤维素或聚丙烯上。在20℃时,活性炭对一氧化氮和二氧化硫的吸附容量最高(分别为120.83和3549.61μg/g)。在110℃时,粘土对一氧化氮和二氧化硫的吸附容量最高(分别为6.20和1182.46μg/g)。一氧化碳的吸附非常微弱,二氧化碳则完全不被吸附。二氧化硫的吸附优于一氧化氮,这与建模结果相符,该结果表明羧基和羟基官能团对吸附有积极影响。除了种类繁多的吸附剂外,本研究的主要新颖之处在于建模策略,该策略能够模拟具有可控尺寸和形状孔隙的表面,并且该策略所获得的结果与通过计算要求更高的方法所获得的结果一致。此外,与实验数据的一致性表明该建模策略是进一步吸附研究的宝贵工具。