Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
mBio. 2023 Apr 25;14(2):e0355022. doi: 10.1128/mbio.03550-22. Epub 2023 Feb 22.
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major obstacle to curing chronic hepatitis B (CHB). Current cccDNA detection methods are mostly based on biochemical extraction and bulk measurements. They nevertheless generated a general sketch of its biological features. However, an understanding of the spatiotemporal features of cccDNA is still lacking. To achieve this, we established a system combining CRISPR-Tag and recombinant HBV minicircle technology to visualize cccDNA at single-cell level in real time. Using this system, we found that the observed recombinant cccDNA (rcccDNA) correlated quantitatively with its active transcripts when a low to medium number of foci (<20) are present, but this correlation was lost in cells harboring high copy numbers (≥20) of rcccDNA. The disruption of HBx expression seems to displace cccDNA from the dCas9-accessible region, while HBx complementation restored the number of observable cccDNA foci. This indicated regulation of cccDNA accessibility by HBx. Second, observable HBV and duck HBV (DHBV) cccDNA molecules are substantially lost during cell division, and the remaining ones were distributed randomly to daughter cells. In contrast, Kaposi's sarcoma-associated herpesvirus (KSHV)-derived episomes can be retained in a LANA (latency-associated nuclear antigen)-dependent manner. Last, the dynamics of rcccDNA episomes in nuclei displayed confined diffusion at short time scales, with directional transport over longer time scales. In conclusion, this system enables the study of physiological kinetics of cccDNA at the single-cell level. The differential accessibility of rcccDNA to dCas9 under various physiological conditions may be exploited to elucidate the complex transcriptional and epigenetic regulation of the HBV minichromosome. Understanding the formation and maintenance of HBV cccDNA has always been a central issue in the study of HBV pathobiology. However, little progress has been made due to the lack of robust assay systems and its resistance to genetic modification. Here, a live-cell imaging system by grafting CRISPR-Tag into the recombinant cccDNA was established to visualize its molecular behavior in real time. We found that the accessibility of rcccDNA to dCas9-based imaging is related to HBx-regulated mechanisms. We also confirmed the substantial loss of observable rcccDNA in one-round cell division and random distribution of the remaining molecules. Molecular dynamics analysis revealed the confined movement of the rcccDNA episome, suggesting its juxtaposition to chromatin domains. Overall, this novel system offers a unique platform to investigate the intranuclear dynamics of cccDNA within live cells.
乙型肝炎病毒 (HBV) 的共价闭合环状 DNA (cccDNA) 是治愈慢性乙型肝炎 (CHB) 的主要障碍。目前的 cccDNA 检测方法大多基于生化提取和批量测量,它们只是大致描绘了 cccDNA 的生物学特征。然而,cccDNA 的时空特征仍然难以理解。为了实现这一目标,我们建立了一个结合 CRISPR-Tag 和重组 HBV 微小环技术的系统,以实时在单细胞水平可视化 cccDNA。使用该系统,我们发现当焦点数量较少(<20)时,观察到的重组 cccDNA(rcccDNA)与活性转录物呈定量相关,但当细胞中存在高拷贝数(≥20)的 rcccDNA 时,这种相关性就消失了。HBx 表达的中断似乎将 cccDNA 从 dCas9 可及区域中置换出来,而 HBx 补充则恢复了可观察到的 cccDNA 焦点数量。这表明 HBx 对 cccDNA 可及性的调节。其次,在细胞分裂过程中,可观察到的 HBV 和鸭乙型肝炎病毒 (DHBV) cccDNA 分子大量丢失,而剩余的分子随机分布到子细胞中。相比之下,卡波西肉瘤相关疱疹病毒 (KSHV) 衍生的内源性体可以以 LANA(潜伏相关核抗原)依赖的方式保留。最后,rcccDNA 内源性体在核内的动力学显示在短时间尺度上的受限扩散,在较长时间尺度上的定向运输。总之,该系统使我们能够在单细胞水平上研究 cccDNA 的生理动力学。在各种生理条件下,rcccDNA 对 dCas9 的不同可及性可能被用来阐明 HBV 微小染色体的复杂转录和表观遗传调控。 乙型肝炎病毒 cccDNA 的形成和维持一直是乙型肝炎病毒病理生物学研究的核心问题。然而,由于缺乏稳健的检测系统和对遗传修饰的抗性,进展甚微。在这里,通过将 CRISPR-Tag 嫁接入重组 cccDNA 中,建立了一种活细胞成像系统,实时可视化其分子行为。我们发现,rcccDNA 对基于 dCas9 的成像的可及性与 HBx 调节机制有关。我们还证实,在一轮细胞分裂中可观察到的 rcccDNA 大量丢失,而剩余的分子随机分布。分子动力学分析揭示了 rcccDNA 内源性体的受限运动,表明其与染色质域并置。总的来说,这个新系统为在活细胞内研究 cccDNA 的核内动力学提供了一个独特的平台。