Suppr超能文献

用于增强光催化制氢的 g-C<sub>3</sub>N<sub>4</sub>中非金属元素填充策略的精准缺陷工程。

The Precision Defect Engineering with Nonmetallic Element Refilling Strategy in g-C N for Enhanced Photocatalytic Hydrogen Production.

机构信息

Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.

出版信息

Small. 2023 May;19(21):e2208117. doi: 10.1002/smll.202208117. Epub 2023 Feb 25.

Abstract

Traditional defect engineering and doping strategies are considered effective means for improving H evolution, but the uncontrollability of the modification process does not always lead to efficient activity. A defect-induced heteroatom refilling strategy is used here to synthesize heteroatoms introduced carbon nitride by precisely controlling the "introduction" sites on efficient N1 sites. Density functional theory calculations show that the refilling of B, P, and S sites have stronger H O adsorption and dissociation capacity than traditional doping, which makes it an optimal H production path. The large internal electric field strength of heteroatom-refilled catalysts leads to fast electron transfer and the hydrogen production of the best sample is up to 20.9 mmol g  h . This work provides a reliable and clear insight into controlled defect engineering of photocatalysts and a universal modification strategy for typical heteroatom and co-catalyst systems for H production.

摘要

传统的缺陷工程和掺杂策略被认为是提高析氢性能的有效手段,但修饰过程的不可控性并不总是导致高效的活性。本文采用缺陷诱导的杂原子填充策略,通过精确控制高效 N1 位上的“引入”位点,合成了引入杂原子的氮化碳。密度泛函理论计算表明,B、P 和 S 位的填充比传统掺杂具有更强的 H O 吸附和解离能力,这使其成为最佳的产氢途径。杂原子填充催化剂的大内电场强度导致快速的电子转移,最佳样品的产氢量高达 20.9 mmol g -1 h -1 。这项工作为光催化剂的可控缺陷工程提供了可靠而清晰的认识,也为典型的杂原子和共催化剂体系的产氢提供了通用的修饰策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验