Suppr超能文献

调控溶解氧浓度以实现活性氧物种的定向转化:煅烧CuCoFe-LDH降解环丙沙星的可控氧化过程

Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: A controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LDH.

作者信息

Wang Shaohong, Li Ting, Cheng Xiang, Zhu Runliang, Xu Yin

机构信息

Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China.

Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China; Hunan Key Lab for Environmental Behavior of New Pollutants and Control Principle, Hunan 411105, PR China.

出版信息

Water Res. 2023 Apr 15;233:119744. doi: 10.1016/j.watres.2023.119744. Epub 2023 Feb 15.

Abstract

Different reactive oxygen species (ROS) tend to attack specific sites on pollutants, leading to the formation of intermediates with different toxic effects. Therefore, regulating the directional transformation of ROS is a new effective approach for safe degradation of refractory organic compounds in wastewater. However, the regulation mechanism and transformation path of ROS remain unclear. In this work, the dissolved oxygen (DO) content was controlled by aeration to generate different ROS through the activation of O on the calcined CuCoFe-LDH (CuCoFe-300). ROS quantitative experiments and electron paramagnetic resonance proved that O was mainly activated to superoxide radical (•O) and singlet oxygen (O) under low DO concentration (0.231 mmol/L) (O → •O → O). With the increasing of DO concentration (0.606 mmol/L), O was inclined to convert into hydroxyl radicals (•OH) (O → •O → HO → •OH). The density functional theory and function model of active sites utilization and DO concentration built a solid proof for ROS conversion mechanism that increasing the DO concentration promotes the increase of active sites utilization on the CuCoFe-300 system. That is, the •O was more prone to convert to •OH, not O in thermodynamics under high active sites utilization condition. Hence, the ROS generation was controlled by regulating DO concentration, and the nontoxic degradation pathway of ciprofloxacin was well-designed. This work is dedicated to the in-depth exploration of the mechanism between DO concentration and ROS conversion, which provides an extremely flexible, low energy consumption, and environmentally friendly wastewater treatment method in a new perspective.

摘要

不同的活性氧(ROS)倾向于攻击污染物上的特定位点,导致形成具有不同毒性效应的中间体。因此,调控ROS的定向转化是安全降解废水中难降解有机化合物的一种新的有效方法。然而,ROS的调控机制和转化路径仍不明确。在本研究中,通过曝气控制溶解氧(DO)含量,以通过煅烧的CuCoFe-LDH(CuCoFe-300)上的O活化产生不同的ROS。ROS定量实验和电子顺磁共振证明,在低DO浓度(0.231 mmol/L)下,O主要被活化为超氧自由基(•O)和单线态氧(O)(O → •O → O)。随着DO浓度的增加(0.606 mmol/L),O倾向于转化为羟基自由基(•OH)(O → •O → HO → •OH)。活性位点利用和DO浓度的密度泛函理论及功能模型为ROS转化机制提供了有力证据,即增加DO浓度促进了CuCoFe-300体系上活性位点利用率的提高。也就是说,在高活性位点利用条件下,从热力学角度来看,•O更倾向于转化为•OH,而不是O。因此,通过调节DO浓度来控制ROS的产生,并精心设计了环丙沙星的无毒降解途径。本研究致力于深入探索DO浓度与ROS转化之间的机制,从新的角度提供了一种极其灵活、低能耗且环保的废水处理方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验