School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
Environ Res. 2020 Dec;191:110227. doi: 10.1016/j.envres.2020.110227. Epub 2020 Sep 17.
Elucidating the generation mechanism of reactive oxygen species (ROS) is essential for advanced oxidation processes with respect to environmental and biological sciences. Herein, self-generation of ROS such as hydroxyl radicals (·OH), superoxide radicals (O) and singlet oxygen (O) from the interaction between multi-layered flowerlike MoS nanosheets and HO is presented. The results demonstrate that HO can exfoliate multi-layered MoS into quantum dots and promote a 2H to 1 T phase change accompanied by the dissolution of MoS to produce H, MoO and SO. Electron spin resonance (ESR) spectroscopy confirm the production of ·OH, superoxide radicals O and O in the MoS/HO system. The calculation data based on density functional theory (DFT) indicate that the 1 T-MoS can lower the free energy profiles for stepwise catalytic decomposition of HO to produce ROS as compared to 2H-MoS.
阐明活性氧(ROS)的产生机制对于环境和生物科学中的高级氧化过程至关重要。本文报道了多层花状 MoS 纳米片与 HO 相互作用自产生 ROS,如羟基自由基(·OH)、超氧自由基(O)和单线态氧(O)。结果表明,HO 可以将多层 MoS 剥离成量子点,并促进 2H 到 1T 相转变,同时 MoS 溶解生成 H、MoO 和 SO。电子自旋共振(ESR)光谱证实了 MoS/HO 体系中·OH、超氧自由基 O 和 O 的产生。基于密度泛函理论(DFT)的计算数据表明,与 2H-MoS 相比,1T-MoS 可以降低 HO 逐步催化分解产生 ROS 的自由能势垒。