College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China.
College of Life Sciences, SCAU, Guangzhou 510642, China.
J Agric Food Chem. 2023 Mar 8;71(9):3921-3938. doi: 10.1021/acs.jafc.2c08051. Epub 2023 Feb 26.
Nitrogen (N) is crucial for plant growth and development, especially in physiological and biochemical processes such as component of different proteins, enzymes, nucleic acids, and plant growth regulators. Six categories, such as transporters, nitrate absorption, signal molecules, amino acid biosynthesis, transcription factors, and miscellaneous genes, broadly encompass the genes regulating NUE in various cereal crops. Herein, we outline detailed research on bioengineering modifications of N metabolism to improve the different crop yields and biomass. We emphasize effective and precise molecular approaches and technologies, including N transporters, transgenics, omics, etc., which are opening up fascinating opportunities for a complete analysis of the molecular elements that contribute to NUE. Moreover, the detection of various types of N compounds and associated signaling pathways within plant organs have been discussed. Finally, we highlight the broader impacts of increasing NUE in crops, crucial for better agricultural yield and in the greater context of global climate change.
氮(N)对植物的生长和发育至关重要,特别是在生理和生化过程中,如不同蛋白质、酶、核酸和植物生长调节剂的组成部分。在不同的谷类作物中,调节氮利用效率的基因大致可分为六大类,包括转运蛋白、硝酸盐吸收、信号分子、氨基酸生物合成、转录因子和杂类基因。本文概述了通过生物工程手段修饰氮代谢以提高不同作物产量和生物量的详细研究。我们强调了有效和精确的分子方法和技术,包括氮转运蛋白、转基因、组学等,这些方法和技术为全面分析氮利用效率的分子因素提供了迷人的机会。此外,还讨论了植物器官内各种类型的氮化合物和相关信号通路的检测。最后,我们强调了提高作物氮利用效率的广泛影响,这对提高农业产量至关重要,在更大的全球气候变化背景下也是如此。