Bicak Bilge
Physics Department, Science Faculty, Istanbul University, Istanbul, Turkey.
J Biomol Struct Dyn. 2023;41(23):13873-13890. doi: 10.1080/07391102.2023.2183041. Epub 2023 Feb 27.
Hypertension is a significant risk factor for various diseases, especially heart, brain, and kidney diseases. It is known that many peptides have the property of lowering blood pressure and determine as ACE inhibitors. The purpose of this study is to obtain information about the molecular structure of Val-Trp (L-valyl-L-tryptophan), which is one of the antihypertensive peptides, by molecular mechanical, quantum mechanical, and spectroscopic methods (FT-IR and Raman). Also, it is aimed to investigate the interactions of Val-Trp dipeptide with receptors related to hypertension and to determine the pharmacokinetic profile due to the potential of the peptide to be a drug candidate. The peptide structure was optimized by DFT/B3LYP/6-311++G(d,p) basis set, then vibrational wavenumbers, molecular electrostatic potential (MEP), HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital), NBO (natural bond orbital) analyzes were performed. The assignment of fundamental theoretical vibration wavenumbers was carried out with potential energy distribution analysis (PED). After the structural analyzes of the peptide were performed, the interactions of the peptide with Angiotensin-converting enzyme (ACE), Angiotensin II Receptor Type 1 (AT1R) and Renin were investigated by molecular docking study. Then, the molecular dynamic (MD) simulation of the peptide-ACE complex with the best binding affinity in the molecular docking studies was carried out for 50 ns. ADME (absorption, distribution, metabolism, and excretion) analysis of Val-Trp dipeptide was performed. In support of the studies carried out, enlightening information about the feasibility of the antihypertensive drug of Val-Trp dipeptide with the help of the ADME profile was presented to the literature.Communicated by Ramaswamy H. Sarma.
高血压是多种疾病的重要风险因素,尤其是心脏、大脑和肾脏疾病。已知许多肽具有降低血压的特性,并被确定为血管紧张素转换酶(ACE)抑制剂。本研究的目的是通过分子力学、量子力学和光谱方法(傅里叶变换红外光谱和拉曼光谱)获取有关降压肽之一的缬氨酸 - 色氨酸(L - 缬氨酰 - L - 色氨酸)分子结构的信息。此外,旨在研究缬氨酸 - 色氨酸二肽与高血压相关受体的相互作用,并由于该肽作为候选药物的潜力来确定其药代动力学特征。通过DFT/B3LYP/6 - 311++G(d,p)基组优化肽结构,然后进行振动波数、分子静电势(MEP)、最高占据分子轨道 - 最低未占据分子轨道(HOMO - LUMO)、自然键轨道(NBO)分析。利用势能分布分析(PED)对基本理论振动波数进行归属。在对肽进行结构分析后,通过分子对接研究考察该肽与血管紧张素转换酶(ACE)、1型血管紧张素II受体(AT1R)和肾素的相互作用。然后,对分子对接研究中具有最佳结合亲和力的肽 - ACE复合物进行50纳秒的分子动力学(MD)模拟。对缬氨酸 - 色氨酸二肽进行了吸收、分布、代谢和排泄(ADME)分析。为支持所开展的研究,借助ADME概况提供了关于缬氨酸 - 色氨酸二肽作为抗高血压药物可行性的有启发性信息,供文献参考。由拉马斯瓦米·H·萨尔马传达。