Simão F M Castela, Cattaneo A S, Schiavina M
Queen Mary University of London, School of Mathematical Sciences, Mile End Rd, London, E1 4NS UK.
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
Lett Math Phys. 2023;113(1):25. doi: 10.1007/s11005-023-01646-2. Epub 2023 Feb 21.
An extension of the notion of classical equivalence of equivalence in the Batalin-Vilkovisky (BV) and Batalin-Fradkin-Vilkovisky (BFV) frameworks for local Lagrangian field theory on manifolds possibly with boundary is discussed. Equivalence is phrased in both a strict and a lax sense, distinguished by the compatibility between the BV data for a field theory and its boundary BFV data, necessary for quantisation. In this context, the first- and second-order formulations of nonabelian Yang-Mills and of classical mechanics on curved backgrounds, all of which admit a strict BV-BFV description, are shown to be pairwise equivalent as strict BV-BFV theories. This in particular implies that their BV complexes are quasi-isomorphic. Furthermore, Jacobi theory and one-dimensional gravity coupled with scalar matter are compared as classically equivalent reparametrisation-invariant versions of classical mechanics, but such that only the latter admits a strict BV-BFV formulation. They are shown to be equivalent as lax BV-BFV theories and to have isomorphic BV cohomologies. This shows that strict BV-BFV equivalence is a strictly finer notion of equivalence of theories.
讨论了在可能带有边界的流形上局部拉格朗日场论的巴塔林 - 维尔科夫斯基(BV)和巴塔林 - 弗拉德金 - 维尔科夫斯基(BFV)框架中,经典等价概念的扩展。等价性从严格和宽松两种意义来表述,其区别在于场论的BV数据与其边界BFV数据之间的兼容性,这对于量子化是必要的。在此背景下,非阿贝尔杨 - 米尔斯理论和弯曲背景下经典力学的一阶和二阶表述,所有这些都允许严格的BV - BFV描述,被证明作为严格的BV - BFV理论是两两等价的。这尤其意味着它们的BV复形是拟同构的。此外,雅可比理论以及与标量物质耦合的一维引力,作为经典力学的经典等价的重新参数化不变版本进行了比较,但只有后者允许严格的BV - BFV表述。它们被证明作为宽松的BV - BFV理论是等价的,并且具有同构的BV上同调。这表明严格的BV - BFV等价是理论等价的一个严格更精细的概念。