Samal Sonali, Nayak Rajashree, Jena Swastik, Balabantaray Bunil Ku
National Institute of Technology Meghalaya, Shillong, Meghalaya India.
JIS Institute of Advanced Studies and Research, JISU Kolkata, West Bengal 700091 India.
Multimed Tools Appl. 2023 Feb 21:1-29. doi: 10.1007/s11042-023-14437-7.
Deep learning-based methods have been proven excellent performance in detecting pornographic images/videos flooded on social media. However, in a dearth of huge yet well-labeled datasets, these methods may suffer from under/overfitting problems and may exhibit unstable output responses in the classification process. To deal with the issue we have suggested an automatic pornographic image detection method by utilizing transfer learning (TL) and feature fusion. The novelty of our proposed work is TL based feature fusion process (FFP) which enables the removal of hyper-parameter tuning, improves model performance, and lowers the computational burden of the desired model. FFP fuses low-level and mid-level features of the outperforming pre-trained models followed by transferring the learned knowledge to control the classification process. Key contributions of our proposed method are i) generation of a well-labeled obscene image dataset GGOI via Pix-2-Pix GAN architecture for the training of deep learning models ii) modification of model architectures by integrating batch normalization and mixed pooling strategy to obtain training stability (iii) selection of outperforming models to be integrated with the FFP by performing end-to-end detection of obscene images and iv) design of TL based obscene image detection method by retraining the last layer of the fused model. Extensive experimental analyses are performed on benchmark datasets i.e., NPDI, Pornography 2k, and generated GGOI dataset. The proposed TL model with fused MobileNet V2 + DenseNet169 network performs as the state-of-the-art model compared to existing methods and provides average classification accuracy, sensitivity, and F1 score of 98.50, 98.46 and 98.49 respectively.
基于深度学习的方法已被证明在检测社交媒体上泛滥的色情图像/视频方面具有出色的性能。然而,由于缺乏大量且标注良好的数据集,这些方法可能会遭受欠拟合/过拟合问题,并且在分类过程中可能会表现出不稳定的输出响应。为了解决这个问题,我们提出了一种利用迁移学习(TL)和特征融合的自动色情图像检测方法。我们所提出工作的新颖之处在于基于TL的特征融合过程(FFP),它能够消除超参数调整,提高模型性能,并降低所需模型的计算负担。FFP融合了表现优异的预训练模型的低级和中级特征,然后转移所学知识以控制分类过程。我们所提出方法的主要贡献包括:i)通过Pix-2-Pix GAN架构生成一个标注良好的淫秽图像数据集GGOI,用于深度学习模型的训练;ii)通过集成批量归一化和混合池化策略来修改模型架构,以获得训练稳定性;iii)通过对淫秽图像进行端到端检测,选择表现优异的模型与FFP集成;iv)通过对融合模型的最后一层进行再训练,设计基于TL的淫秽图像检测方法。在基准数据集(即NPDI、色情2k和生成的GGOI数据集)上进行了广泛的实验分析。与现有方法相比,所提出的融合MobileNet V2 + DenseNet169网络的TL模型表现为最先进的模型,分别提供了98.50、98.46和98.49的平均分类准确率、灵敏度和F1分数。