Suppr超能文献

具有抗肿胀和皮肤无缝界面的湿粘附多功能水凝胶,用于水下电生理监测和通信。

Wet-Adhesive Multifunctional Hydrogel with Anti-swelling and a Skin-Seamless Interface for Underwater Electrophysiological Monitoring and Communication.

机构信息

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, P. R. China.

Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 8;15(9):11549-11562. doi: 10.1021/acsami.2c21595. Epub 2023 Feb 27.

Abstract

A stable and seamless adhesion between the human skin and the hydrogel-based electronic skin is necessary for accurate sensing and human health monitoring in aquatic environments. Despite achieving significant progress in this field, it remains a great challenge to design skin-interfaced conductive hydrogels with high electrical conductivity, stablility, and seamless underwater adhesion to skin. Herein, a skin-inspired conductive multifunctional hydrogel is proposed, which has a wet-adhesive/hydrophilic and a non-adhesive/hydrophobic bilayer structure. The hydrogel shows high stretchability (∼2400%) and an ultra-low modulus (4.5 kPa), which facilitate the conformal and seamless attachment of the hydrogel to the skin with reduced motion artifacts. Owing to synergistic physical and chemical interactions, this hydrogel can achieve reliable underwater adhesion and display remarkable underwater adhesion strength (388.1 kPa) to porcine skin. In addition, MXene has been employed to obtain high electrical conductivity, create a route for stable electron transport, and reinforce mechanical properties. The hydrogel also possesses self-healing ability, a low swelling ratio (∼3.8%), biocompatibility, and specific adhesion to biological tissues in water. Facilitated with these advantages, the hydrogel-based electrodes achieve reliable electrophysiological signal detection in both air and wet conditions and demonstrate a higher signal-to-noise ratio (28.3 dB) than that of commercial Ag/AgCl gel electrodes (18.5 dB). Also, the hydrogel can be utilized as a strain sensor with high sensitivity for underwater communication. This multifunctional hydrogel improves the stability of the skin-hydrogel interface in aquatic environments and is expected to be promising for the next-generation bio-integrated electronics.

摘要

一种稳定且无间隙的水凝胶基电子皮肤与人体皮肤之间的黏附对于在水介质中进行精确传感和人体健康监测是十分必要的。尽管在该领域已经取得了显著的进展,但设计具有高导电性、稳定性和对皮肤无缝水下黏附性的水凝胶界面仍是一个巨大的挑战。在此,提出了一种仿皮肤的导电多功能水凝胶,它具有湿黏附/亲水和非黏附/疏水的双层结构。该水凝胶具有高拉伸性(约 2400%)和超低模量(4.5 kPa),有助于水凝胶与皮肤的共形和无缝贴合,减少运动伪影。由于协同的物理和化学相互作用,该水凝胶可以实现可靠的水下黏附,并对猪皮显示出显著的水下黏附强度(388.1 kPa)。此外,MXene 被用于获得高导电性、创建稳定电子传输的途径以及增强机械性能。该水凝胶还具有自修复能力、低溶胀比(约 3.8%)、生物相容性以及在水中对生物组织的特定黏附性。得益于这些优势,基于水凝胶的电极在空气和湿条件下均能可靠地检测到电生理信号,并且与商用 Ag/AgCl 凝胶电极(18.5 dB)相比,具有更高的信噪比(28.3 dB)。此外,该水凝胶可用作具有水下通信高灵敏度的应变传感器。这种多功能水凝胶提高了水介质中皮肤-水凝胶界面的稳定性,有望成为下一代生物集成电子学的有前途的材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验