Suppr超能文献

利用人工智能分析 COVID-19 封控前后高等教育的学业表现的时间趋势。

Temporal analysis of academic performance in higher education before, during and after COVID-19 confinement using artificial intelligence.

机构信息

Eurecat Academy, Eurecat-Centre Tecnol`ogic de Catalunya, Barcelona, Spain.

ADaS Lab, Universitat Oberta de Catalunya, Barcelona, Spain.

出版信息

PLoS One. 2023 Feb 27;18(2):e0282306. doi: 10.1371/journal.pone.0282306. eCollection 2023.

Abstract

This study provides the profiles and success predictions of students considering data before, during, and after the COVID-19 pandemic. Using a field experiment of 396 students and more than 7400 instances, we have analyzed students' performance considering the temporal distribution of autonomous learning during courses from 2016/2017 to 2020/2021. After applying unsupervised learning, results show 3 main profiles from the clusters obtained in the simulations: students who work continuously, those who do it in the last-minute, and those with a low performance in the whole autonomous learning. We have found that the highest success ratio is related to students that work in a continuous basis. However, last-minute working is not necessarily linked to failure. We have also found that students' marks can be predicted successfully taking into account the whole data sets. However, predictions are worse when removing data from the month before the final exam. These predictions are useful to prevent students' wrong learning strategies, and to detect malpractices such as copying. We have done all these analyses taking into account the effect of the COVID-19 pandemic, founding that students worked in a more continuous basis in the confinement. This effect was still present one year after. Finally, We have also included an analysis of the techniques that could be more effective to keep in a future non-pandemic scenario the good habits that were detected in the confinement.

摘要

这项研究提供了在 COVID-19 大流行之前、期间和之后考虑数据的学生的概况和成功预测。我们使用了一项针对 396 名学生和超过 7400 个实例的现场实验,分析了 2016/2017 年至 2020/2021 年课程中自主学习的时间分布对学生表现的影响。在应用无监督学习之后,结果显示从模拟中获得的聚类中存在 3 个主要的学生类型:持续学习的学生、临时抱佛脚的学生和整个自主学习中表现不佳的学生。我们发现,成功率最高的与持续学习的学生有关。然而,临时抱佛脚并不一定与失败有关。我们还发现,考虑到整个数据集,学生的成绩可以成功预测。然而,当从期末考试前一个月的数据中删除时,预测结果会更差。这些预测对于防止学生采取错误的学习策略和检测抄袭等作弊行为非常有用。我们在考虑 COVID-19 大流行影响的情况下进行了所有这些分析,发现学生在禁闭期间更持续地学习。这种影响在一年后仍然存在。最后,我们还分析了在未来非大流行的情况下,为了保持在禁闭期间发现的好习惯,哪些技术可能更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c0/9970089/5bdac9c72808/pone.0282306.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验