Suppr超能文献

使用LinkNet在结直肠癌病理图像上确定肿瘤浸润淋巴细胞的预后意义。

Prognostic Significance of Tumor-Infiltrating Lymphocytes Determined Using LinkNet on Colorectal Cancer Pathology Images.

作者信息

Liu Anran, Li Xingyu, Wu Hongyi, Guo Bangwei, Jonnagaddala Jitendra, Zhang Hong, Xu Steven

机构信息

Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China.

School of Data Science, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

JCO Precis Oncol. 2023 Feb;7:e2200522. doi: 10.1200/PO.22.00522.

Abstract

PURPOSE

Tumor-infiltrating lymphocytes (TILs) have a significant prognostic value in cancers. However, very few automated, deep learning-based TIL scoring algorithms have been developed for colorectal cancer (CRC).

MATERIALS AND METHODS

We developed an automated, multiscale LinkNet workflow for quantifying TILs at the cellular level in CRC tumors using H&E-stained images from the Lizard data set with annotations of lymphocytes. The predictive performance of the automatic TIL scores () for disease progression and overall survival (OS) was evaluated using two international data sets, including 554 patients with CRC from The Cancer Genome Atlas (TCGA) and 1,130 patients with CRC from Molecular and Cellular Oncology (MCO).

RESULTS

The LinkNet model provided outstanding precision (0.9508), recall (0.9185), and overall F1 score (0.9347). Clear continuous TIL-hazard relationships were observed between and the risk of disease progression or death in both TCGA and MCO cohorts. Both univariate and multivariate Cox regression analyses for the TCGA data demonstrated that patients with high TIL abundance had a significant (approximately 75%) reduction in risk for disease progression. In both the MCO and TCGA cohorts, the TIL-high group was significantly associated with improved OS in univariate analysis (30% and 54% reduction in risk, respectively). The favorable effects of high TIL levels were consistently observed in different subgroups (classified according to known risk factors).

CONCLUSION

The proposed deep-learning workflow for automatic TIL quantification on the basis of LinkNet can be a useful tool for CRC. is likely an independent risk factor for disease progression and carries predictive information of disease progression beyond the current clinical risk factors and biomarkers. The prognostic significance of for OS is also evident.

摘要

目的

肿瘤浸润淋巴细胞(TILs)在癌症中具有重要的预后价值。然而,针对结直肠癌(CRC)开发的基于深度学习的自动化TIL评分算法非常少。

材料与方法

我们开发了一种自动化的多尺度LinkNet工作流程,用于使用来自蜥蜴数据集的苏木精和伊红(H&E)染色图像及淋巴细胞注释,在细胞水平上对CRC肿瘤中的TILs进行定量。使用两个国际数据集评估自动TIL评分()对疾病进展和总生存期(OS)的预测性能,这两个数据集包括来自癌症基因组图谱(TCGA)的554例CRC患者和来自分子与细胞肿瘤学(MCO)的1130例CRC患者。

结果

LinkNet模型具有出色的精度(0.9508)、召回率(0.9185)和总体F1分数(0.9347)。在TCGA和MCO队列中,均观察到与疾病进展或死亡风险之间存在明显的连续TIL-风险关系。对TCGA数据进行的单变量和多变量Cox回归分析均表明,TIL丰度高的患者疾病进展风险显著降低(约75%)。在MCO和TCGA队列中,单变量分析显示TIL高分组与OS改善显著相关(风险分别降低30%和54%)。在不同亚组(根据已知风险因素分类)中均一致观察到高TIL水平的有利影响。

结论

所提出的基于LinkNet的用于自动TIL定量的深度学习工作流程可能是CRC的有用工具。可能是疾病进展的独立风险因素,并携带超出当前临床风险因素和生物标志物的疾病进展预测信息。对OS的预后意义也很明显。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验